摘要
温升是制约直流电磁继电器小型化与高负载化设计的主要影响因素,准确的温升计算是继电器设计能够达到其性能目标的重要辅助手段。提出利用流固耦合传热及离散坐标法辐射传递方程,建立计算流体力学散热仿真模型,以此改进原先固体热力学有限元散热仿真模型在对流与辐射计算准确性方面的不足。运用该模型对某型继电器进行温度场仿真,通过温升试验验证了仿真结果的准确性。另外,本文的仿真模型在仿真模拟继电器温度分布时,取得比固体热力学有限元散热模型更接近实际情况的结果。因此,本文的仿真模型可为相同类型的继电器产品提供更有效的热场设计工具。
Temperature rise is a major influence factor on the miniaturization and high⁃load design of DC electromagnetic relays.Thus,accurate temperature rise calculation is an important supplementary means in achieving the performance goals of the relay design.In this paper,a computational fluid dynamics heat dissipation simulation model using fluid⁃solid coupled heat transfer and discrete coordinate method radiation transfer equations is proposed to improve the accuracy of the original solid thermodynamic finite element heat dissipation simulation model in terms of convection and radiation calculations.The temperature field of a certain type of electromagnetic relay is simulated by adopting the proposed model.Then a temperature rise test is conducted to verify the accuracy of the simulation results.In addition,the temperature distribution simulation results of the relay by adopting the proposed model are closer to the actual situation than that using the solid thermodynamic finite element heat dissipation model.Therefore,the simulation model in this paper can provide a more effective thermal field design tool for the same type of relay products.
作者
张郑滨
陈丽安
王其亚
罗志伟
ZHANG Zhengbin;CHEN Li'an;WANG Qiya;LUO Zhiwei(School of Electrical Engineering and Automation,Xiamen University of Technology,Xiamen 361024,China;Extra High Voltage Branch Company of State Grid Fujian Electric Power Co.,Ltd.,Fuzhou 350013,China;Xiamen Hongfa Electroacoustic Co.,Ltd.,Xiamen 361021,China;School of Mechanical and Automotive Engineering,Xiamen University of Technology,Xiamen 361024,China)
出处
《电力科学与技术学报》
CAS
CSCD
北大核心
2023年第3期230-240,251,共12页
Journal of Electric Power Science And Technology
基金
福建省自然科学基金项目(2019J01863)。
关键词
直流电磁继电器
计算流体力学
温度场
DC electromagnetic relay
computational fluid dynamics
temperature field