期刊文献+

基于改进非全连接神经网络的站点客流预测模型 被引量:1

Station Ridership Prediction Model Based on Improved Non-Fully Connected Neural Network
下载PDF
导出
摘要 在地面公交运输中,站点客流量数据是公交线网规划最重要的基础数据之一。站点周边兴趣点(POI)的类型、数量以及距离会导致站点客流量出现不同的趋势。神经网络是研究客流预测的常用方案,然而由于POI对客流的影响存在相互独立性,这一重要特征并未在传统全连接神经网络的结构中得以体现,易使预测效果不尽人意。基于POI与客流量关系的特殊性,改进全连接神经网络的基本结构,构建一种特定的非全连接神经网络,利用所有公交站点客流量的历史数据及各类POI分布,实现对站点各时间段的客流量的模拟及预测。模型设定一种连接矩阵实现特定的连接方式,并根据客流量的性质额外赋予部分隐藏层实际意义,构造组合误差传递函数,增强神经网络的可解释性。该模型可以快速收敛至全局最优解,改进传统全连接神经网络的收敛速度慢、拟合效果差、易陷入局部最优解等问题。实验结果表明,该模型单位时间内的客流量预测偏差在50人以内的概率达到88%以上,对比其他常见预测模型均有优质表现,并且能准确模拟每日客流的变化趋势。 Station ridership data are among the most important basic data in the network planning of routine bus systems.The type,number,and distance of the Point of Interest(POI)around a station can lead to different ridership trends.However,this important feature is not reflected in the structure of traditional fully connected neural networks that are commonly used to study ridership prediction because of the mutual independence of POI influence on ridership,which tends to make prediction results unsatisfactory.This study improves the basic structure of a fully connected neural network by considering the specificity of the relationship between POI and ridership and constructs a specific,non-fully connected neural network.The simulation and prediction of ridership at each time period of the station are achieved using historical ridership data at all bus stations as well as weights of various POI types.The model creates a connection matrix to realize a non-fully connected network,thereby constructing a composite error transfer function to associate meaning with some of the hidden layers,to enhance the interpretability of the neural network based on the nature of ridership.The proposed neural network addresses some of the problems of traditional neural networks,such as slow convergence,poor fitting,and entrapment into local optima.Experiments demonstrate that the proposed model converges to the global optimal solution more rapidly and the probability of accurate prediction exceeded 88%when applying the model to 50 people to predict ridership per hour.The model has an excellent effect compared to other common prediction models and can accurately simulate the daily ridership trend.
作者 高御尧 石明全 秦渝 陈建平 周喜 张鹏 GAO Yuyao;SHI Mingquan;QIN Yu;CHEN Jianping;ZHOU Xi;ZHANG Peng(Chongqing Institute of Green and Intelligent Technology,Chinese Academy of Sciences,Chongqing 400700,China;Chongqing School,University of Chinese Academy of Sciences,Chongqing 400700,China;Fengzhu Technology Co.,Ltd.,Chongqing Public Traffic Holdings Group,Chongqing 401120,China)
出处 《计算机工程》 CAS CSCD 北大核心 2023年第9期43-51,共9页 Computer Engineering
基金 国家重点研发计划(2020YFA0712300) 国家自然科学基金(11771421) 重庆市自然科学基金(cstc2019jcyj-msxmX0638)。
关键词 公路运输 客流量预测 非全连接神经网络 兴趣点 公交站点 highway transportation ridership prediction non-fully connected neural network Point of Interest(POI) bus station
  • 相关文献

参考文献4

二级参考文献21

  • 1Donoho D L.High dimensional data analysis : the curses andblessings of dimensionality[C]//American Mathematics SocietyConference: Math Challenges of the 21st Century, Los Angeles,USA,2000.
  • 2Zhang G P.Neural networks for classification: a survey [J].IEEE Trans on Systems,Man,and Cyberaetics-Part B,2000,30(1).
  • 3Brown D E, Corrube V, Pittard C L.A comparison of deci-sion tree classifiers with backpropagation neural networksfor multimodal classification problems[J].Pattern Recogni-tion, 1993,26:953-961.
  • 4Bruce L M, Koger C H, Li J.Dimensionality reduction ofhyperspectral data using discrete wavelet transform featureextractionfJ] .IEEE Transactions on Geoscience and RemoteSensing,2002,40( 10).
  • 5Carreira-Perpinan M A.A review of dimension reductiontechniques[R].[S.l.].University of Sheffield, 1997.
  • 6杨建刚.神经网络应用原理[M].杭州:浙江大学出版社,2001.
  • 7王燕妮,樊养余.改进BP神经网络的自适应预测算法[J].计算机工程与应用,2010,46(17):23-26. 被引量:27
  • 8毛永毅,周康磊.基于BP神经网络的定位跟踪算法[J].计算机工程与应用,2011,47(20):238-240. 被引量:5
  • 9王静,刘剑锋,马毅林,孙福亮,陈锋.北京市轨道交通车站客流时空分布特征[J].城市交通,2013,11(6):18-27. 被引量:45
  • 10冷彪,赵文远.基于客流数据的区域出行特征聚类[J].计算机研究与发展,2014,51(12):2653-2662. 被引量:16

共引文献91

同被引文献9

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部