期刊文献+

基于NARX神经网络的电池健康状态预测

Battery Health State Prediction Based on NARX Neural Network
下载PDF
导出
摘要 动力电池作为电动汽车的核心,其健康状态(SOH)为表征电池能否正常工作的重要指标,表示电池当前的使用寿命及其可靠性,并直接影响电池的性能。准确估计电池的SOH能够预知锂离子电池的整体寿命,完善充放电策略,以避免电池滥用等故障的发生。为确保对动力电池的健康状态进行准确预测,文章选择与电池健康状态具备极强相关性的特征参数作为健康状态预测的健康因子,设计并训练NARX非线性自回归神经网络,通过建立不同的训练集和输入特征参数的对照组去分析对比训练集和输入参数带给预测结果的影响,获取精确的电池健康状态值,能够提高电动汽车的动力性。 As the core of electric vehicles,the power battery's state of health(SOH)is an important indicator to characterize whether the battery can work normally,indicating the current service life and reliability of the battery,and directly affecting the performance of the battery.Accurately estimating the SOH of the battery can predict the overall life of the lithium-ion battery and improve the charging and discharging strategy to avoid the occurrence of battery abuse and other failures.In order to accurately predict the health state of power battery,this paper selects the characteristic parameters that have a strong correlation with the health state of battery as the health factor of health state prediction,and designs and trains the NARX nonlinear autoregressive neural network.By establishing different training sets and control group of input characteristic parameters to analyze and compare the influence of training sets and input parameters on the prediction results,obtaining accurate battery health status value can improve the power performance of electric vehicles.
作者 王静 侯林 孙世星 郑聪 李强 王翔宇 武挺 张斌 WANG Jing;HOU Lin;SUN Shixing;ZHENG Cong;LI Qiang;WANG Xiangyu;WU Ting;ZHANG Bin(School of Automobile,Chang'an University,Xi'an 710064,China;Baoji Geely Auto Parts Company Limited,Baoji 721306,China)
出处 《汽车实用技术》 2023年第17期5-9,共5页 Automobile Applied Technology
关键词 电动汽车 电池健康状态预测 故障诊断 NARX神经网络 Electric vehicles Battery health state prediction Fault diagnosis NARX neural network
  • 相关文献

参考文献4

二级参考文献36

  • 1胡士强,敬忠良.粒子滤波算法综述[J].控制与决策,2005,20(4):361-365. 被引量:293
  • 2陈召洪.“锂想国”探秘:新能源汽车带来的春之律动[R].万联证券新能源研究小组动力锂电池深度研究报告.2010,09.
  • 3SAHA B, GOEBEL K, CHRISTOPHERSEN J.Comparison of prognostic algorithms for estimating remaining useful life of batteries[J].Transactions of the Institute of Measurement and Control, 2009,31 (3-4) : 293-308.
  • 4BLANKE H, BOHLEN O, BULLER S, et al.Impedance measurements on lead-acidbatteries for state-of-charge, state-of-healthand cranking capability prognosis in elec- tricand hybrid electric vehicles[J].Journal of Power Sources, 2005 , 144(2) : 418-25.
  • 5BHANGU B S, BENTLEY P, STONE D A, et al.Nonlinear observersfor predicting state-of-charge and state-of-health of lead-acid batteries for hybridelectricvehicles [J].IEEE Transactions onVehicular Technology, 2005,54 (3) : 783-94.
  • 6KOZLOWSKI J D.Electrochemical cellprognostics using online impedancemeasurements and model-based data fusiontechniques[C].Aerospace Conference 2003,IEEE Proceedings, 2003 , 7 : 3257-3270.
  • 7DALAL M ,MA J,HE D.Lithium-ion battery life prognostic health management system using particle filtering framework[J]. Proceedings of the Institution of Mechanical Engineers, Part O : Journal of Risk and Reliability, 2011 , 225 ( 1 ) : 81 - 90.
  • 8GAO L, LIU S,DOUGAL R A.Dynamic lithium-ion batterymodel forsystem simulation[J].IEEE Transactions on Com- ponents and Packaging Technologies, 2002,25(3) : 495-505.
  • 9Luo Jianhui, NAMBURU M, PATFIPATI K, et al. Model- based Prognostic Techniques[C].AUTOTESTCON 2003: 330-340.
  • 10SAHA B,GOEBEL K.Modeling Li-ion battery capacity depletion in a particle filtering framework[C].Annual Conference of the Prognostics and Health Management Society, San Diego, California, 2009.

共引文献44

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部