摘要
X射线检测作为一种实用的无损检测(NDT)方法,在压力容器的焊缝缺陷检测中得到了广泛的应用。基于X射线图像的自动缺陷识别技术也随着人工智能(AI)的发展取得了飞速发展。本文将焊缝缺陷裁剪成像素小块作为神经网络的输入,并在AlexNet的基础上通过添加BN层改进了原网络,而后又选取了最优α值的LeakyReLU层代替了原有的ReLU层,使最终的AlexNet-BN-L模型取得了高达88.80%的5折交叉验证平均准确率。
As a practical non-destructive testing(NDT)method,X-ray testing has been widely applied in the detection of weld defects in pressure vessels.Automatic weld defect recognition technology based on X-ray film has also made great progress with the development of AI.In this research,the weld defect is cut into small pixel patches as the input of neural network.The original AlexNet is improved by adding BN layer,and the LeakyReLU layer with optimalαvalue replaces the original ReLU layer.The final AlexNet-BN-L model achieves the highest 5-fold cross validation average accuracy rate of 88.80%.
作者
金海昆
程晓颖
廖晓平
Jin Haikun;Cheng Xiaoying;Liao Xiaoping(School of Mechanical Engineering,Zhejiang Sci-tech University,Hangzhou,Zhejiang 310018,China;Zhejiang Deli Equipment CO,Ltd)
出处
《计算机时代》
2023年第9期151-154,158,共5页
Computer Era
关键词
射线无损检测
焊缝缺陷分类
卷积神经网络
交叉验证
radiographic non-destructive testing
classification of weld defects
convolutional neural network
cross validation