期刊文献+

基于AlexNet的焊缝缺陷分类方法

Weld defect classification method based on AlexNet
下载PDF
导出
摘要 X射线检测作为一种实用的无损检测(NDT)方法,在压力容器的焊缝缺陷检测中得到了广泛的应用。基于X射线图像的自动缺陷识别技术也随着人工智能(AI)的发展取得了飞速发展。本文将焊缝缺陷裁剪成像素小块作为神经网络的输入,并在AlexNet的基础上通过添加BN层改进了原网络,而后又选取了最优α值的LeakyReLU层代替了原有的ReLU层,使最终的AlexNet-BN-L模型取得了高达88.80%的5折交叉验证平均准确率。 As a practical non-destructive testing(NDT)method,X-ray testing has been widely applied in the detection of weld defects in pressure vessels.Automatic weld defect recognition technology based on X-ray film has also made great progress with the development of AI.In this research,the weld defect is cut into small pixel patches as the input of neural network.The original AlexNet is improved by adding BN layer,and the LeakyReLU layer with optimalαvalue replaces the original ReLU layer.The final AlexNet-BN-L model achieves the highest 5-fold cross validation average accuracy rate of 88.80%.
作者 金海昆 程晓颖 廖晓平 Jin Haikun;Cheng Xiaoying;Liao Xiaoping(School of Mechanical Engineering,Zhejiang Sci-tech University,Hangzhou,Zhejiang 310018,China;Zhejiang Deli Equipment CO,Ltd)
出处 《计算机时代》 2023年第9期151-154,158,共5页 Computer Era
关键词 射线无损检测 焊缝缺陷分类 卷积神经网络 交叉验证 radiographic non-destructive testing classification of weld defects convolutional neural network cross validation
  • 相关文献

参考文献2

二级参考文献25

  • 1陈波,杨阳,沈田双.基于模糊聚类分析的边缘检测算法[J].仪器仪表学报,2006,27(z2):1603-1604. 被引量:5
  • 2李景辰.压力容器基础知识[M].北京:劳动人事出版社,1984..
  • 31997/EU, Pressure Equipment Directive[S].
  • 4ASME Boiler & Pressure Vessel Code[S].
  • 5李景辰 冯铗中.压力容器基础知识[M].北京:劳动人事出版社,1984..
  • 6JB4730-1994.压力容器无损检测[S].[S].,..
  • 7杜波夫.金属磁记忆法诊断管路、设备和结构[R].北京:锅炉压力容器检测研究中心,2002..
  • 8ASME Boiler & Pressure Vessel Code[S].
  • 9.日本高压气体保护法[S].[S].,..
  • 101997/EU,Pressure Equipment Directive[S].

共引文献140

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部