期刊文献+

整合网络分析构建胃癌自噬相关预后模型

A prognostic model for gastric cancer autophagy based on integrated network analysis
下载PDF
导出
摘要 目的本研究旨在构建一种基于自噬基因的预后模型。方法5个独立公共队列中的1,099例胃癌患者的转录组数据纳入研究,整合分析间充质特征和自噬标志基因,构建自噬相关的胃癌预后标志(APSGC)。结果鉴定出5个主调控间充质样亚型分子特征的自噬基因(CCL2、SPHK1、ITGFB1、PEA15、DLC1),基于这5个标志基因,作者构建了APSGC预后模型。在训练和验证数据集中,该模型可将胃癌患者分为高危组和低危组,两组患者在总体生存期(OS)和无复发生存期(RFS)方面均存在显著差异。此外,多变量分析结果表明,APSGC具有较强的独立预后预测效能。基因集富集分析发现,高危组富集表达间充质亚型相关通路。结论通过整合分析构建了一种可靠的自噬相关预后标志。基于此模型的风险分层,有助于指导胃癌患者的精准治疗。 Objective To develop a prognosis signature based on autophagy genes by integrating molecular modalities involved in the mesenchymal subtype.Methods The gene expression profiles of 5 public datasets were applied to this study,including 1,099 gastric cancer patients.Mesenchymal modalities and autophagy signatures were integrated to develop an autophagy-based prognostic signature for gastric cancer(APSGC).Results We identified five autophagy genes as key factors in the mesenchymal subtype and established the APSGC based on these five genes.In the training and 4 validation data sets,the APSGC could divide gastric cancer patients into the high-risk groups and the low-risk groups.There were significant differences in terms of overall survival(OS)and recurrence-free survival(RFS)between the two groups.In addition,the APSGC remained an independent prognostic predictor in multivariate analysis.Furthermore,GSEA results revealed that many mesenchymal related pathways were significantly enriched in high-risk group.Conclusion We propose a promising autophagy-based prognostic signature by integrating network analysis,which can be used for risk stratification and guiding the precision treatment of gastric cancer patients.
作者 戴玉樑 舒鹏 李文杰 张冉冉 Dai Yuliang
出处 《浙江临床医学》 2023年第8期1127-1130,共4页 Zhejiang Clinical Medical Journal
关键词 胃癌 自噬 网络分析 预后 标志物 Gastric cancer Autophagy Network analysis Prognosis Signature
  • 相关文献

参考文献1

二级参考文献131

共引文献31

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部