期刊文献+

用电大数据分析与电表异常检测 被引量:1

Electricity Consumption Big Data Analysis and Abnormal Meter Detection
原文传递
导出
摘要 随着我国智能电表使用日臻成熟,对智能电表的监测越来越重要.通过对电表数据的采集、清洗,完成数据格式化.运用皮尔森相关系数分析以及K折交叉验证等方法,进行数据分析.通过采用深度学习时序模型进行预测研究,最终达到检测异常与故障识别.通过对异常电表的检测,可以延长正常电表的使用寿命,节省大量的资源. It is more and more important to monitor smart meters with their mature use.The data formatting is completed through the collecting and cleaning to the data from meters.The data analysis is done by the methods including Pearson correlation coefficient analysis and K fold cross validation etc.Eventually testing abnormity and failure recognition can be obtained through prediction research based on deep learning time series model.The service time of normal meter can be prolonged by abnormal meters testing.This will lead to saving a lot of resources.
作者 刘铭 方向 王多林 刘东鹏 刘方兴 贺青 许东 LIU Ming;FANG Xiang;WANG Duo-lin;LIU Dong-peng;LIU Fang-xing;HE Qing;XU Dong(School of Mathematics&Statistics,Changchun University of Technology,Changchun 130012,China;University of Missouri-Columbia,MO 65211,USA;Qinghu Rising Sunshine Data Technology(Beijing)Co.,Ltd,Beijing 100084,China;Division of Electromagnetic Metrology,National Institute of Metrology,Beijing 100013,China;Suzhou Haoxing Haizhou Technology Co,.Itd,Suzhou 215000,China)
出处 《数学的实践与认识》 2023年第8期155-165,共11页 Mathematics in Practice and Theory
基金 国家自然科学基金(61503150)。
关键词 智能电表 数据分析 深度学习时序模型 smart meter data analysis deep learning time series model
  • 相关文献

参考文献20

二级参考文献103

共引文献410

同被引文献2

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部