期刊文献+

面向云原生的多租户混合调度模型研究

Research on Cloud-native Multi-tenant Hybrid Scheduling Model
下载PDF
导出
摘要 云原生基础架构支持微服务、大数据、人工智能及高性能计算等多种负载类型,如何编排和调度多负载类型任务成为云原生技术应用面临的重要挑战。基于此,围绕云原生领域多负载类型的混合调度关键技术,分析面向云原生的多租户混合调度模型。首先,针对多租户场景下集群资源使用率低、各租户之间资源使用不均的问题,提出资源共享和资源独占模型;其次,针对混合调度资源分配不公平引起的服务质量问题,引入调度公平算法确保层次资源模型的调度公平性;最后,实现了基于Kubernetes的混合调度原型系统并验证了资源共享和资源独占模型的有效性和层次化模型的调度公平性。 The cloud native infrastructure supports multiple load types such as microservices,big data,artificial intelligence,and high-performance computing.How to arrange and schedule tasks of multiple load types has become an important challenge for cloud native technology applications.Based on this,analyze the key technology of hybrid scheduling with multiple load types in the cloud native domain,and analyze the multi tenant hybrid scheduling model for cloud native.Firstly,a resource sharing and exclusive model is proposed to address the issues of low cluster resource utilization and uneven resource utilization among tenants in multi tenant scenarios.Secondly,to address the quality of service issues caused by unfair allocation of mixed scheduling resources,a scheduling fairness algorithm is introduced to ensure the scheduling fairness of the hierarchical resource model.Finally,a hybrid scheduling prototype system based on Kubernetes was implemented and the effectiveness of the resource sharing and resource exclusive models,as well as the scheduling fairness of the hierarchical model,were verified.
作者 李露 魏磊 郭孟然 LI Lu;WEI Lei;GUO Mengran(Suzhou Centennial College,Suzhou Jiangsu 215000,China;School of Cyber Science and Engineering,Southeast University,Nanjing Jiangsu 211189,China;College of Software Engineering,Southeast University,Nanjing Jiangsu 211189,China)
出处 《信息与电脑》 2023年第11期1-7,共7页 Information & Computer
基金 江苏省高等学校自然科学基金资助项目(项目编号:21KJB520024)。
关键词 云原生 混合调度 多租户 Kubernetes 公平调度 cloud native hybrid scheduling multi tenant Kubernetes fair scheduling
  • 相关文献

参考文献1

二级参考文献65

  • 1LI J,WANG Q,WANG C,et al.Fuzzy keyword search over en-crypted data in cloud computing. INFOCOM’’10 . 2010
  • 2MORETTI C,BUI H,HOLLINGSWORTH K,et al.All-pairs:an abstraction for data-intensive computing on campus grids. IEEE Transactions on Parallel and Distributed Systems . 2010
  • 3DONG F,,LUO J,SONG A,et al.Resource load based stochasticDAGs scheduling mechanism for grid environment. HPCC’’10 . 2010
  • 4ZHOU J,LUO J,SONG A.NETOP:a non-cooperative game basedtopology optimization model towards improving search performance. Journal of Internet Technology .
  • 5Google investor relations. http://investor.google.com/financial . 2011
  • 6GREENBERG A,HAMILTON J,MALTZ D A,et al.The cost of acloud:research problems in data center networks. SIGCOMMComput Commun Rev . 2008
  • 7GUO C,LU G,LI D,et al.BCube:a high performance,server-centricnetwork architecture for modular data centers. SIGCOMM’’09 . 2009
  • 8About virtual machine templates. http://technet.micro-soft.com/en-us/library/bb740838.aspx . 2011
  • 9ANDR H,LAGAR-CAVILLA S,WHITNEY J A,et al.SnowFlock:virtual machine cloning as a first-class cloud primitive. ACM TransComput Syst . 2011
  • 10PIKE R,DORWARD S,GRIESEMER R,et al.Interpreting the Data:Parallel Analysis with Sawzall. Scientific Programming Journal . 2005

共引文献826

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部