摘要
文章提出了一种基于金字塔池化模型(Pyramid Scene Parseing Network,PSPNet)神经网络模型的竞技运动图像分割方法。其使用了一种具有速度快、精度高、易部署优点的卷积神经网络架构,利用残差网络实现了数据增强技术,进一步提高了分割的准确性和稳定性。实验结果表明,提出的改进后的PSP Net模型在图像分割中的准确率为94.59%,优于其他方法。该方法有望在竞技运动领域的视频图像分割任务中得到广泛应用。
The article proposes a neural network model based on the Pyramid Scene Parseing Network(PSPNet)for athletic sports image segmentation.It uses a convolutional neural network architecture with the advantages of fast speed,high accuracy and easy deployment,and implements a data enhancement technique using a residual network to further improve the accuracy and stability of segmentation.Experimental results show that the accuracy of the proposed improved PSP Net model in image segmentation is 94.59%,which is better than other methods.The method is expected to be widely used in video image segmentation tasks in the field of competitive sports.
作者
芦明君
赵玉兰
LU Mingjun;ZHAO Yulan(School of Information and Control Engineering,Jilin Institute of Chemical Technology,Jilin Jilin 132022,China;Electrical and Information Engineering College,Jilin Agricultural Scienceand TechnologyUniversity,Jilin Jilin 132101,China)
出处
《信息与电脑》
2023年第11期205-207,共3页
Information & Computer
基金
吉林省智慧农业工程研究中心建设项目(项目编号:2016)
吉林省特色高水平学科新兴交叉学科“数字农业”项目(项目编号:2018)。