摘要
随着网络招聘的发展,网络招聘渠道拥有大量的个人简历和企业招聘信息,数量达到上千万份甚至数亿份。海量数据是网络招聘时代突出的“数字化”特征。人岗匹配的核心原理是通过机器学习真实招聘数据,并将学习结果放到更多人才/岗位推荐上。近年来,人工智能、深度学习在各行各业爆炸式渗透,文本挖掘技术日新月异,很多研究人员利用深度学习技术对就业供需精准智能匹配做了相关研究。
With the development of online recruitment,online recruitment channels have a large number of resumes and enterprise recruitment information,and the number has reached tens of millions or even hundreds of millions.Massive data is a prominent"digital"feature in the era of online recruitment.The core principle of job matching is to learn the real recruitment data through machine and spread the learning results to more talents/job recommendations.In recent years,artificial intelligence and deep learning have exploded in all walks of life,and text mining technology is changing rapidly.Many researchers have used deep learning technology to do relevant research on accurate intelligent matching of employment supply and demand.
作者
何晶
龙坡
HE Jing;LONG Po(Changsha Social Work College,Changsha,Hunan Province,410004 China)
出处
《科技资讯》
2023年第17期244-248,共5页
Science & Technology Information
基金
湖南省十四五教育科学规划课题《基于深度学习的高校毕业生就业供需精准智能匹配研究》(项目编号:XJK22CXX005)。
关键词
数字化
人才/岗位推荐
深度学习
就业供需
精准智能匹配
Digitization
Talent/position recommendation
Deep learning
Employment supply and demand
Accurate and Intelligent matching