期刊文献+

基于注意力特征融合的高保真遥感图像薄云去除 被引量:1

A high-fidelity method for thin cloud removal from remote sensing images based on attentional feature fusion
下载PDF
导出
摘要 为改善非均匀薄云覆盖遥感图像薄云去除存在校正不足或颜色失真的问题,该文提出了一个融合注意力特征的高保真薄云去除端到端网络。首先,设计了注意力特征融合模块,该模块引入注意力机制以及融合模块,并通过3个注意力特征融合模块级联,使网络关注薄云覆盖区域的信息提取,减少无云部分的影响。同时,加入颜色损失函数和锐化损失函数以提高图像准确的颜色保真度和细节清晰度。通过实验结果表明,该方法的输出结果在视觉评估和定量评价指标(峰值信噪比和结构相似度)上均优于其他方法的结果。该网络对于多种场景下的非均匀薄云图像均有较好的去云效果,且输出的图像色彩效果真实、亮度过度平滑、细节轮廓清晰。 The thin cloud removal from remote sensing images with uneven thin cloud cover suffers from undercorrection or color distortion.This study proposed a high-fidelity end-to-end network method for thin cloud removal based on attentional feature fusion.First,this study designed an attentional feature fusion module integrating the attention mechanism and a fusion module.Through the cascade of three attentional feature fusion modules,the network focused on extracting the information on thin-cloud cover areas,reducing the impact of cloud-free areas.Furthermore,this study improved the color fidelity and detail clarity of images using the color and sharpening loss functions.The experimental results show that this method outperformed other methods in visual and quantitative evaluation indices(peak signal-to-noise ratio and structural similarity).This method yielded satisfactory effects of cloud removal in images with uneven thin cloud cover in various scenarios,producing images with actual colors,smooth brightness transition,and distinct detail contours.
作者 牛祥华 黄微 黄睿 蒋斯立 NIU Xianghua;HUANG Wei;HUANG Rui;JIANG Sili(School of Communication and Information Engineering,Shanghai University,Shanghai 200444,China)
出处 《自然资源遥感》 CSCD 北大核心 2023年第3期116-123,共8页 Remote Sensing for Natural Resources
基金 国家重点研发计划项目“石窟文物本体风化病害评估系统及保护技术研究”(编号:2019YFC1520500)资助。
关键词 薄云去除 注意力机制 特征融合 遥感图像 深度学习 thin cloud removal attention mechanism feature fusion remote sensing image deep learning
  • 相关文献

参考文献2

二级参考文献57

  • 1马苗,郝重阳,韩培友,樊养余,黎新伍.基于灰色关联分析的图像保真度准则[J].计算机辅助设计与图形学学报,2004,16(7):978-983. 被引量:22
  • 2王涛,高新波,张都应.一种基于内容的图像质量评价测度[J].中国图象图形学报,2007,12(6):1002-1007. 被引量:15
  • 3VQEG. Final report from VQEG on the validation of objective models of video quality assessment[OL]. (2000-3-15). Http://www.its.bldrdoc.gov/vqeg/projects/fr tv _phaseII/do wnloads/VQEGII_Final_Peport.pdf.
  • 4Wang Z, Liaalg L, and Alan C B. Video quality assessment using structural distortion measurement[C]. International Conference on Image Processing, Rochester, NY, USA, 2002, 3: 65-68.
  • 5Yu Z, Wu H R, and Winkler S, et al.. Vision-model-based impairment metric to evaluate blocking artifact in digital video[J]. Proceeding of the IEEE, 2002, 90(1): 154-169.
  • 6Nill N B and Bouzas B H. Objective image quality measure derived from digital image power spectra[J]. IEEE Signal Processing Letter, 2002, 9(3): 388-392.
  • 7Wang Z, Alan C B, and Hamid R S. Image quality assessment: from error visibility to structural similarity[J]. IEEE Transactions on Image Processing, 2004, 13(4): 600-612.
  • 8ITU-R Recommendation BT.500-10. Methodology for the subjective assessment of the quality of the television pictures[S], 2000.
  • 9Baroncint V. New tendencies in subjective video quality evaluation[J]. IEICE Transactions on Fundamentals, 2006, 89(11): 2933-2937.
  • 10Hoffmann H, Itagaki T, and Wood D, et al.. A novel method for subjective picture quality assessment and further studies of HDTV formats[J]. IEEE Transctions on Broadcasting, 2008, 54(1): 1-13.

共引文献225

同被引文献11

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部