摘要
为构建新能源消纳知识图谱,首先,将电网积累的海量调度运行数据以动态四元组的形式,显式地表达调度运行数据的时空关联关系。通过滑动时间窗口快速搜索、提取局部时空图,构建子图数据集。然后,时空同步图卷积网络对局部时空图进行高维特征提取,充分挖掘历史数据的时空关联关系,利用新能源消纳知识图谱中存储的机理知识对模型进行引导,并通过多子图并行训练提升模型的学习效率。最后,基于中国西北某省级电网算例进行仿真和实验验证。结果表明,所提方法可以有效避免复杂的数学建模以及模型求解,相比于传统方法具有更高的评估精度与速度。
To construct a knowledge graph of renewable energy accommodation,firstly,the accumulated massive dispatching operation data of the power grid in the form of dynamic quaternions explicitly expresses the spatio-temporal correlations of dispatching operation data.The local spatio-temporal graph is quickly searched and extracted by sliding time windows to construct sub-graph data sets.Then,the spatio-temporal synchronous graph convolutional network extracts high-dimensional features from the local spatio-temporal graphs to fully excavate the spatio-temporal correlations of the historical data.The model is guided by the mechanism knowledge stored in the knowledge graph of renewable energy accommodation and trained in parallel by multiple subgraphs to improve the learning efficiency.Finally,simulation and experimental validation are conducted based on a provincial grid case in Northwest China.The results show that the proposed method can effectively avoid complicated mathematical modeling and solving,and has higher evaluation accuracy and speed compared with traditional methods.
作者
陈宗源
余涛
丁茂生
潘振宁
陈俊斌
刘希喆
CHEN Zongyuan;YU Tao;DING Maosheng;PAN Zhenning;CHEN Junbin;LIU Xizhe(School of Electric Power Engineering,South China University of Technology,Guangzhou 510610,China;State Grid Ningxia Electric Power Co.,Ltd.,Yinchuan 750001,China)
出处
《电力系统自动化》
EI
CSCD
北大核心
2023年第15期46-54,共9页
Automation of Electric Power Systems
基金
国家自然科学基金委员会-国家电网公司智能电网联合基金资助项目(U2066212)
国家自然科学基金资助项目(52207105)
广东省基础与应用基础研究基金资助项目(2023A1515011598)。
关键词
新能源消纳评估
知识图谱
时空同步图卷积网络
时空图
机理知识
人工智能
renewable energy accommodation assessment
knowledge graph
spatio-temporal synchronous graph convolutional network
spatio-temporal graph
mechanism knowledge
artificial intelligence