期刊文献+

Design of luminescence in(Sr,Gd)Li(Al,Mg)_(3)N_(4):Eu^(2+)deep red phosphors via crystal field engineering for full-spectrum WLEDs 被引量:1

原文传递
导出
摘要 Red phosphor,with longer wavelength,is highly desirable for full-spectrum WLEDs.Targeted deep red phosphors(Sr,Gd)Li(AI,Mg)_(3)N_(4):Eu^(2+)were designed from the initial model of SrLiAl_(3)N_(4):Eu^(2+)by structural modification.The correlations among structural evolution,crystal-field environment,and luminescence properties were elucidated.Replacing Sr^(2+)with Gd^(3+)in(Sr,Gd)LiAl_(3)N_(4):Eu^(2+)leads to the enhanced crystal field splitting,larger Stokes shift,and increased structural polyhedron distortion differences,consequently resulting in spectral red-shift and broadening.For further spectral tuning,Mg,with lower electronegativity,was also introduced to modify the local crystal structure,consequently resulting in a further red-shift towards 675 nm and enhanced photoluminescence intensity in(Sr,Gd)Li(AI,Mg)_(3)N_(4):Eu^(2+).What’s more,w-LEDs were fabricated by using blue LED chip,blue,green,red and deep red((Sr,Gd)Li(Al,Mg)_(3)N_(4):Eu^(2+))phosphors whose color rendering index were Ra 96.0 and R997.7.All above results demonstrate that the partial replacements of Sr^(2+)by Gd^(3+)and Al^(3+)by Mg^(2+)are effective methods for spectral modulation and(Sr,Gd)Li(AI,Mg)_(3)N_(4):Eu^(2+)phosphors are suitable for highquality full-spectrum WLEDs.
出处 《Journal of Rare Earths》 SCIE EI CAS CSCD 2023年第8期1127-1134,I0001,共9页 稀土学报(英文版)
基金 supported by the National Key Research and Development Program of China(2021YFB3500402)。
  • 相关文献

同被引文献3

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部