摘要
传统声滤波器阻挡空气自由流通的固有缺陷限制了其在众多噪音场所的实际应用.基于薄膜结构在谐振状态时具有的特殊声学透射和反射性质,构建了一种薄膜和硬质圆环结构的声滤波器.利用薄膜结构谐振时产生的次级声场和自由通过硬质圆环的连续声场之间的相互作用,使声波在滤波器内部形成涡旋而产生能量损耗,实现噪声消除的目的.仿真计算结果表明,设计的声滤波器可以同时实现噪声消除和空气的自由流通,在声滤波器的开放面积占总面积比例为72.96%时声能量通过率低至10%.改变声滤波器薄膜结构和硬质圆环的几何尺寸,可以实现宽频的噪声消除.设计的声滤波器在对空气流通性要求较高的噪音消除场所具有广阔的应用前景.
The inherent defects of traditional acoustic filters that block the free flow of air limit their practical applications for noise elimination.Based on the special transmission and reflection properties of acoustic metamaterials at resonances,an acoustic filter consisting of membranes and hard rings was constructed.Due to the interaction between the secondary sound fields arising from the resonance of the membranes and the continuous sound fields that freely pass through the hard rings,a sound vortex inside the acoustic filter generates,which results in sound energy dissipation and achieves noise elimination.The simulation results show that noise elimination and free air circulation can be accomplished at the same time via the proposed acoustic filter.And the pass rate of sound energy is less than 10% when the ratio of open area to total area of acoustic filter is 72.96%.Furthermore,broadband acoustic filtering can be realized by changing the geometrical sizes of the membranes and rigid rings.The designed filter is promising for eliminating noises in places with high requirements of air circulation.
作者
陈怀军
赵文霞
翟世龙
CHEN Huai-jun;ZHAO Wen-xia;ZHAI Shi-long(College of Physics and Electronic Information Engineering,Engineering Research Center of Nanostructure and Functional Materials,Ningxia Normal University,Guyuan 756000,Ningxia,China;School of Physical Science and Technology,Northwestern Polytechnical University,Xi'an 710072,Shaanxi,China)
出处
《西北师范大学学报(自然科学版)》
CAS
北大核心
2023年第5期53-57,共5页
Journal of Northwest Normal University(Natural Science)
基金
宁夏自然科学基金资助项目(2020AAC03266,2023AAC03326)
国家自然科学基金资助项目(11764033,11804278)
宁夏青年拔尖人才“国家级学术技术带头人后备人选”资助项目。
关键词
声学超构材料
薄膜结构
滤波器
消声材料
噪音消除
acoustic metamaterial
membrane structure
filter
sound absorption material
noise cancellation