摘要
为了丰富动力系统中熵理论的研究,在度量空间中定义了半度量函数dn,并引入集值映射,在该条件下定义子集上Packing拓扑熵,得到子集上Parking拓扑熵的变分原理为h^(P)_(top)(f,K)=sup{h_(μ)(f):μ∈M(X),μ(K)=1},其中h^(P)_(top)(f,K)是集合K的Packing拓扑熵.
In order to enrich the study of entropy theory in dynamical systems,the semi metric function d.was defined in the metric space.The set-valued mapping was introduced.Under this condition,the packing topological entropy on the subset was defined,and the variational principle of the parking topological entropy on the subset was obtained,i.e.h^(P)_(top)(f,K)=sup{h_(μ)(f):μ∈M(X),μ(K)=1},where h^(P)_(top)(f,K)was packing topological entropy of K.
作者
王威
吴晶晶
WANG Wei;WU Jingjing(School of General Education,Nantong Institute of Technology,Nantong 226002,China)
出处
《安徽大学学报(自然科学版)》
CAS
北大核心
2023年第5期8-14,共7页
Journal of Anhui University(Natural Science Edition)
基金
国家自然科学基金面上项目(11971236)
南通理工学院中青年骨干教师科研基金资助项目(ZQNGGJS202135)。