期刊文献+

基于DeeplabV3+网络的睑板腺图像分割研究和评价

Research and evaluation of tarsal gland image segmentation based on DeeplabV3+network
下载PDF
导出
摘要 目的:构建基于DeeplabV3+网络的人工智能(AI)系统算法模型,提高眼干燥症诊疗效率。方法:收集某医院干眼门诊就诊患者的睑板腺图像,构建图像数据库,随机分配为训练集和验证集,投入模型训练,分析并验证其可行性和有效性。结果:在内部验证集,基于DeeplabV3+的算法模型对于睑板腺区域分割的准确率达95.65%,均交并比和Kappa系数分别为83.75%和92.96%。该算法分割出的萎缩区域,与临床医生分割结果相似。结论:DeeplabV3+网络模型能够实现眼干燥症患者睑板腺腺体的自动切分,可辅助相关疾病的临床诊断和筛查,提高诊断效率。 Objective To construct an artificial intelligence(AI)system algorithm model based on DeeplabV3+network to improve the efficiency of ophthalmoxerosis diagnosis and treatment.Methods The tarsal gland images of ophthalmoxerosis patients in a hospital were collected and the image database was constructed.The images were randomly divided into a training set and a validation set,and the model trained to analyze and verify its feasibility and effectiveness.Results For the internal validation set,the accuracy of the algorithm model based on DeeplabV3+for tarsal gland region segmentation reached 95.65%,with the mIOU and Kappa coefficient of 83.75%and 92.96%,respectively.The atrophic regions segmented by this algorithm were similar to those segmented by clinical doctors.Conclusion The DeeplabV3+network model can achieve automatic segmentation of tarsal gland,which can assist clinical diagnosis and screening of related diseases and improve diagnostic efficiency.
作者 杨伊 张洪 单琨 刘瑶 赵文兵 蔡越江 洪佳旭 赵地 YANG Yi;ZHANG Hong;SHAN Kun;LIU Yao;ZHAO Wenbing;CAI Yuejiang;HONG Jiaxu;ZHAO Di(School of Computer Science,Beijing University of Technology,Beijing 100124,China;Eye and ENT Hospital of Fudan University;Institute of Computing Technology,Chinese Academy of Sciences)
出处 《中国数字医学》 2023年第8期18-23,共6页 China Digital Medicine
关键词 机器学习 语义分割 眼干燥症 睑板腺萎缩 Machine learning Semantic segmentation Ophthalmoxerosis Tarsal gland atrophy
  • 相关文献

参考文献10

二级参考文献67

共引文献189

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部