期刊文献+

基于深度学习的商品销售预测研究

Research on Product Sales Prediction Based on Deep Learning
下载PDF
导出
摘要 文章基于深度学习方法,通过结合粒子群优化(Particle Swarm Optimization,PSO)和长短期记忆(Long Short Term Memory,LSTM)网络,提出了一种针对大数据的商品销售预测模型。文章首先分析了LSTM的结构,其次分析了PSO方法对LSTM的优化方式,提出了PSO-LSTM商品销量预测模型,最后使用Kaggle上的数据集进行训练和测试。将所提出的模型与标准LSTM模型进行比较,结果表明,所提方法的预测精度和稳定性均优于标准LSTM方法。 Based on the deep learning method,this paper proposes a commodity sales forecasting model for big data by combining Particle swarm optimization(PSO)and Long Short Term Memory(LSTM)Network.This article first analyzes the structure of LSTM,then analyzes the optimization method of PSO method for LSTM,and proposes a PSO-LSTM product sales prediction model.Finally,this study used a dataset on Kaggle for training and testing,and compared the proposed model with the standard LSTM model.The results showed that the proposed method had better prediction accuracy and stability than the standard LSTM method.
作者 陈国际 张思航 CHEN Guoji;ZHANG Sihang(Dalian University of Technology City Institution,Dalian Liaoning 116000,China)
出处 《信息与电脑》 2023年第12期111-113,共3页 Information & Computer
关键词 深度学习 粒子群优化(PSO) 长短期记忆(LSTM)网络 商品销售预测 deep learning Particle Swarm Optimization(PSO) Long Short Term Memory(LSTM)network commodity sales forecasting
  • 相关文献

参考文献10

二级参考文献105

  • 1冯夏庭,王泳嘉,卢世宗.边坡稳定性的神经网络估计[J].工程地质学报,1995,3(4):54-61. 被引量:116
  • 2王长江.指数平滑法中平滑系数的选择研究[J].中北大学学报(自然科学版),2006,27(6):558-561. 被引量:95
  • 3Fukuyama Y.Fundamentals of particle swarm techniques [A].Lee K Y,El-Sharkawi M A.Modern Heuristic Optimization Techniques With Applications to Power Systems [M].IEEE Power Engineering Society,2002.45~51
  • 4Eberhart R C,Shi Y.Particle swarm optimization:developments,applications and resources [A].Proceedings of the IEEE Congress on Evolutionary Computation [C].Piscataway,NJ:IEEE Service Center,2001.81~86
  • 5van den Bergh F.An analysis of particle swarm optimizers [D].South Africa:Department of Computer Science,University of Pretoria,2002
  • 6Kennedy J,Eberhart R C.A discrete binary version of the particle swarm algorithm [A].Proceedings of the World Multiconference on Systemics,Cybernetics and Informatics [C].Piscataway,NJ:IEEE Service Center,1997.4104~4109
  • 7Yoshida H,Kawata K,Fukuyama Y,et al.A particle swarm optimization for reactive power and voltage control considering voltage stability [A].Proceedings of the International Conference on Intelligent System Application to Power System [C].Rio de Janeiro,Brazil,1999.117~121
  • 8Angeline P.Using selection to improve particle swarm optimization [A].Proceedings of IJCNN99[C].Washington,USA,1999.84~89
  • 9Shi Y,Eberhart R C.A modified particle swarm optimizer [R].IEEE International Conference of Evolutionary Computation,Anchorage,Alaska,May 1998
  • 10Shi Y,Eberhart R C.Empirical study of particle swarm optimization [A].Proceeding of Congress on Evolutionary Computation [C].:Piscataway,NJ:IEEE Service Center,1999.1945~1949

共引文献831

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部