摘要
肌肉疲劳是衡量运动者肌肉状态的重要指标,忽视肌肉疲劳状态进行高强度运动会造成一定的运动损伤,而运动过程中肌肉组织内部的生化数据是现有肌肉检测方法的主要依据,因此基于多通道介电常数测试技术设计了肌肉疲劳状态检测系统。硬件部分主要包括传感器阵列、数据采集模块、主控模块以及人机交互界面等,通过反向传播(Back Propagation,BP)神经网络算法完成对人体不同肌肉部位的不疲劳、轻度疲劳、中度疲劳以及重度疲劳4种状态的识别分析。测试结果表明,该系统的识别准确率较高,为人们的日常锻炼或病人的康复训练提供了有效指导,对医学研究、体育锻炼、病人的康复训练具有一定的参考价值。
Muscle fatigue is an important indicator to measure the muscle state,ignoring muscle fatigue state for highintensity exercise will cause sports injuries,and the biochemical data inside the muscle tissue during exercise is the main basis of existing methods,so the muscle fatigue state detection system is designed based on multi-channel dielectric constant test technology.The hardware part includes sensor array,data acquisition module,main control module and human-computer interaction interface,and the identification and analysis of the four states of non-fatigue,mild fatigue,moderate fatigue and severe fatigue of the human body are completed through Back Propagation(BP)neural network algorithm.The results show that the recognition accuracy of the system is high,which provides effective guidance and has certain value for people's daily exercise or patients'rehabilitation training.
作者
李雅迪
LI Yadi(Zhengzhou Vocational College of Finance and Taxation,Zhengzhou Henan 450000,China)
出处
《信息与电脑》
2023年第12期121-124,共4页
Information & Computer
基金
2022年河南省高等学校重点科研项目“万物互联视域下物联网智慧农业系统助力乡村振兴战略脱贫攻坚应用研究”(项目编号:22B520032)。
关键词
介电常数
肌肉疲劳状态
嵌入式技术
dielectric constant
muscle fatigue state
embedded technology