期刊文献+

适型分数阶耦合系统正解的存在性和Ulam稳定性

Existence and Ulam stability for positive solutions of conformable fractional coupled systems
原文传递
导出
摘要 研究了一类带p-Laplace算子的适型分数阶微分方程耦合系统非局部边值问题。首先,通过构造一个特殊的Banach空间,利用Schauder不动点定理和Banach压缩映射原理得到了系统正解的存在性与唯一性等多个结论,给出了系统正解存在及唯一的充分条件。然后,重点研究了系统的稳定性,得到了系统具有广义Hyers-Ulam稳定性的结论。最后,通过具体事例说明所得主要结论的适用性。 A nonlocal boundary value problem for a class of conformable fractional differential equations coupled system with p-Laplacian operator are studied.First,by constructing a special Banach space and using the Schauder fixed-point theorem and Banach contraction mapping principle,several results on the existence and uniqueness for positive solutions to the system are obtained,and provide sufficient conditions for the existence and uniqueness of the solution.Then,the stability of the system is studied,and the conclusion that the system has the generalized Hyers-Ulam stability is obtained.Finally,the applicability of the main conclusions obtained is demonstrated through a specific example.
作者 倪云 刘锡平 NI Yun;LIU Xiping(College of Science,University of Shanghai for Science and Technology,Shanghai 200093,China)
出处 《山东大学学报(理学版)》 CAS CSCD 北大核心 2023年第8期82-91,共10页 Journal of Shandong University(Natural Science)
基金 上海市“科技创新行动计划”启明星培育(扬帆专项)项目(23YF1429100)。
关键词 适型分数阶导数 耦合系统 p-Laplace 算子 非局部边值问题 HYERS-ULAM稳定性 conformable fractional derivative coupled system p-Laplacian operator nonlocal boundary value problem Hyers-Ulam stability
  • 相关文献

参考文献2

二级参考文献18

  • 1Bai Z B, Lii H S. Positive solutions for boundary value problem of nonlinear fractional differential equa- tion[J]. J Math Anal Appl, 2005, 311:495-505.
  • 2Zhang S Q. Positive solutions for boundary-value problems of nonlinear fractional differential equations[J]. Electronic Journal of Differential Equations, 2006, 36:1-12.
  • 3Gejji V D, Jafari H. Adomian decomposition: a tool for solving a system of fractional differential equa- tions[J]. J Math Anal Appl, 2005, 301:508-518.
  • 4Podlubny I. Fractional Differential Equations, Mathematics in Science and Engineering[M]. New York/London/Toronto: Academic Press, 1999. vol, 198.
  • 5Samko S G, Kilbas A A, Marichev O I. Fractional Integrals and Derivatives (Theory and Applications)[M]. Switzerland: Gordon and Breach, 1993.
  • 6MERAL F,ROYSTON T,MAGIN R.Fractional calculus in viscoelasticity,An experimental study[J].Communications in Nonlinear Science and Numerical Simulation,2010,15(14):939-945.
  • 7WU Huahua,SUN Sujing.Based on the variational method of the multiple positive solutions of fourth-order boundary value problem[J].Journal of Shandong University of Science and Technology(Natural Science),2014,33(2):96-99.
  • 8OLDHAM K,SPANIER J.The fractional calculus[M].New York:Academic Press,1974:27-36.
  • 9PODLUBNY I.Fractional differential equations[M].New York:Academic Press,1999:50-65.
  • 10KILBAS A,SRIVASTAVA H,TRUJILLO J.Theory and applications of fractional differential equations[M].Amsterdam,Elsevier Science B.V.,2006:78-84.

共引文献37

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部