摘要
研究了一类带p-Laplace算子的适型分数阶微分方程耦合系统非局部边值问题。首先,通过构造一个特殊的Banach空间,利用Schauder不动点定理和Banach压缩映射原理得到了系统正解的存在性与唯一性等多个结论,给出了系统正解存在及唯一的充分条件。然后,重点研究了系统的稳定性,得到了系统具有广义Hyers-Ulam稳定性的结论。最后,通过具体事例说明所得主要结论的适用性。
A nonlocal boundary value problem for a class of conformable fractional differential equations coupled system with p-Laplacian operator are studied.First,by constructing a special Banach space and using the Schauder fixed-point theorem and Banach contraction mapping principle,several results on the existence and uniqueness for positive solutions to the system are obtained,and provide sufficient conditions for the existence and uniqueness of the solution.Then,the stability of the system is studied,and the conclusion that the system has the generalized Hyers-Ulam stability is obtained.Finally,the applicability of the main conclusions obtained is demonstrated through a specific example.
作者
倪云
刘锡平
NI Yun;LIU Xiping(College of Science,University of Shanghai for Science and Technology,Shanghai 200093,China)
出处
《山东大学学报(理学版)》
CAS
CSCD
北大核心
2023年第8期82-91,共10页
Journal of Shandong University(Natural Science)
基金
上海市“科技创新行动计划”启明星培育(扬帆专项)项目(23YF1429100)。