期刊文献+

稀燃和EGR对汽油发动机热效率影响的试验研究 被引量:1

Experimental study on the effect of lean burn and EGR on thermal efficiency of gasoline engine
下载PDF
导出
摘要 在一台4缸2.0 L汽油发动机上试验研究过量空气系数、有效压缩比、废气再循环(exhaust gas recircu-lation, EGR)率对发动机油耗和热效率的影响。结果表明:采用稀燃可以提高发动机热效率,过量空气系数由1.0增大到1.6,发动机热效率提高约5.7%,但继续增大稀释程度将导致油耗增加、热效率降低;当有效压缩比为12.7时,发动机热效率最大,为44.1%,进一步增大压缩比产生爆震,需要推迟点火时刻,导致燃烧持续期增加、发动机热效率降低;EGR率为4.6%时,发动机热效率最大,为44.4%,EGR率较大导致燃烧不稳定,出现发动机失火等问题。 An experimental study is conducted on a 4-cylinder 2.0 L gasoline engine to investigate the effects of excess air coefficient,effective compression ratio,and exhaust gas recirculation(EGR)rate on engine fuel consumption and thermal efficiency.The results show that the use of lean burn technology can improve the thermal efficiency of the engine,the engine thermal efficiency increases by approximately 5.7%when the excess air coefficient increases from 1.0 to 1.6,however,further dilution would increase fuel consumption and reduce thermal efficiency.The engine has the highest thermal efficiency of 44.1%when effective compression ratio is 12.7,but further increase in compression ratio will cause engine knocking,which requires delaying the ignition time,which can lead to an increase in combustion duration and a decrease in engine thermal efficiency.In addition,the EGR rate(4.6%)could achieve the highest thermal efficiency,44.4%,but unstable combustion and misfire will occur in the engine when EGR rate increased further.
作者 陈志方 奚星 吴小军 徐春龙 杨贵春 李春晖 顾娇娇 CHEN Zhifang;XI Xing;WU Xiaojun;XU Chunlong;YANG Guichun;LI Chunhui;GU Jiaojiao(China North Engine Research Institute(Tianjin),Tianjin 300400,China)
出处 《内燃机与动力装置》 2023年第4期7-12,34,共7页 Internal Combustion Engine & Powerplant
关键词 稀燃 EGR 进气相位 汽油机 热效率 lean burn EGR intake cam phase gasoline engine thermal efficiency
  • 相关文献

参考文献2

二级参考文献18

  • 1胡顺堂,谢辉.提高汽油机部分负荷效率的新技术[J].拖拉机与农用运输车,2010,37(6):38-41. 被引量:9
  • 2Wikipedia. List of hybrid vehicle[EB/OL]. http://enwikipedia.org/wiki/List_of_hybrid_vehicles. 2014-06.
  • 3Fontana G, Galloni E. Variable valve timing for fueleconomy improvement in a small spark-ignition engine[J]. Applied Energy,2009,86:96-105.
  • 4Anderson M K,Assanis D N,Filipi Z S. First and secondlaw analyses of a naturally-aspirated,miller cycle,SI engine with late intake valve closure[C]//SAE Paper.Detroit,USA,1998:980889.
  • 5Taylor J,Fraser N,Dingelstadt R,et al. Benefits oflate inlet valve timing strategies afforded through the useof intake cam in cam applied to a gasoline turbochargeddownsized engine[C]//SAE Paper. Detroit,USA,2011:2011-01-0360.
  • 6Kamiuto K. Comparison of basic gas cycles under therestriction of constant heat addition[J]. Applied Energy,2006,83:583-593.
  • 7Mikalsen R,Wang Y D,Roskilly A P. A comparison ofMiller and Otto cycle natural gas engines for small scaleCHP applications[J]. Applied Energy,2009,86:922-927.
  • 8Hou Shuhn-Shyurng. Comparison of performances of airstandard Atkinson and Otto cycles with heat transfer considerations[J]. Energy Conversion and Management,2007,48:1683-1690.
  • 9Zhao Jinxing,Xu Min,Li Mian,et al. Design andoptimization of an Atkinson cycle engine with theartificial neural network method[J]. Applied Energy,2012,92:492-502.
  • 10Gamma Technologies. GT-Power User’s Manual[R].Version 7.0,2009.

共引文献12

同被引文献6

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部