期刊文献+

基于MIDAS-QR的均值-VaR参数化组合投资决策 被引量:1

Mean-VaR Parametric Portfolio Selection via the MIDAS-QR Method
原文传递
导出
摘要 文章将混频数据分析和特征变量参数化的思想引入组合投资决策,构建基于MIDAS-QR的M-VaR参数化组合投资模型与方法,克服了传统均值-VaR (M-VaR)模型忽略动态市场环境、混频数据信息和金融资产特征等方面的不足.文章的核心技术和主要创新在于:第一,利用频率对齐技术和多项式权重约束函数,将高频资产特征引入组合投资权重函数;第二,引入参数化组合投资策略,考虑金融资产特征变量并将其参数化,在M-VaR框架下构建参数化组合投资模型;第三,通过理论推导,将M-VaR参数化组合投资转化为MIDAS-QR回归问题,给出模型求解方法.选取中国股市行业板块指数进行实证研究,结果表明:文章在混频数据环境下构造的参数化组合投资模型,建立了组合投资权重与高频金融资产特征之间联系,增加了组合投资结果的可解释性;新模型能够充分挖掘高频特征变量信息,给出时变的组合投资权重,实现动态组合投资选择,获得了比其他模型更好的组合投资绩效;基于MIDAS-QR的求解方法,有效缩减了模型中待估计参数数目,能够解决大规模动态组合投资决策问题. This paper introduces mixed-frequency data analysis and the notion of parameterization of features into portfolio optimization,and develops a mean-VaR parametric portfolio selection model using the MIDAS-QR method.This novel model overcomes the deficiencies of conventional mean-VaR(M-VaR) model which ignores the dynamic market environment,mixed-frequency data information and asset features.The core technologies and main innovations of this paper are as follows.First,the original high-frequency characteristic variables are introduced into the portfolio weight function using the frequency alignment technique and polynomial weight constraint function.Second,under the mean-VaR framework,introducing parametric portfolio policies,the parametric portfolio selection model is constructed with characteristic variables.Third,the mean-VaR parametric portfolio selection model is transformed to an MIDAS-QR question theoretically.For an illustration purpose,an empirical study is conducted on the industry sector index of Chinese stock market.The empirical results show that the novel model provides a link between portfolio weights and characteristic variables,which improves the interpretability of the resulting portfolios.It also fully captures the useful information contained in high-frequency characteristic variables,provides time-varying portfolio weights for dynamic portfolio selection,and obtains better portfolio performance than other models.Moreover,the solution method based on MIDAS-QR effectively reduces the number of parameters to be estimated,is efficient for solving large-scale dynamic portfolio selection.
作者 刘书婷 许启发 蒋翠侠 LIU Shuting;XU Qifa;JIANG Cuixia(Shanghai Key Laboratory of Financial Information Technology,Shanghai University of Finance and Economics,Shanghai 200433;School of Management,Hefei University of Technology,Hefei 230009;Key Laboratory of Process Optimization and Intelligent Decision-Making,Ministry of Education,Hefei University of Technology,Hefei 230009)
出处 《系统科学与数学》 CSCD 北大核心 2023年第7期1788-1803,共16页 Journal of Systems Science and Mathematical Sciences
基金 国家自然科学基金(72171070) 中央高校基本科研业务费专项资金(2022110361)资助课题。
关键词 组合投资 均值-VAR 混频数据抽样 分位数回归 参数化策略 Portfolio mean-VaR mixed data sampling quantile regression para-metric policies.
  • 相关文献

参考文献9

二级参考文献55

  • 1王宇熹,肖峻,陈伟忠.我国证券分析师推荐报告投资价值实证研究——以上海申银万国证券研究所为例[J].中国矿业大学学报,2006,35(2):214-219. 被引量:11
  • 2叶五一,缪柏其,吴振翔.基于Copula方法的条件VaR估计[J].中国科学技术大学学报,2006,36(9):917-922. 被引量:22
  • 3王明进,陈奇志.基于独立成分分解的多元波动率模型[J].管理科学学报,2006,9(5):56-64. 被引量:21
  • 4Philippe Jorion. Risk2 : Measuring the Risk in Value at Risk [ J ]. Financial Analysts Journal, 1996,52 ( 6 ) :47 - 56.
  • 5Duffle, Pan. An overview of value at risk [ J ]. The Journal of Derivatives, 1997,4 ( 3 ) :7 - 49.
  • 6J. McNeil. Extreme Value Theory for Risk Managers [ P ]. ETH Zentrum CH - 8092,1999.
  • 7Dowd, K. Estimating VaR with order statistics [ J ]. Derivatives, 2001,8(3) :23 -30.
  • 8Mandelbrot B. The variation of certain speculative prices [ J ]. Journal of business, 1963,36 ( 4 ) : 394 - 4 19.
  • 9Emorechts, P, Kluppelberg, C, Korshunov, D. Modelling Extremal Events, Berlin, Springer, 1997.
  • 10Hansheng Wang, Chih-Ling Tsai. Tail Index Regression [ J ]. Journal of the American Statistical Association. September 1,2009, 104 (487) :1233 - 1240.

共引文献30

同被引文献14

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部