期刊文献+

Image Retrieval with Text Manipulation by Local Feature Modification 被引量:2

下载PDF
导出
摘要 The demand for image retrieval with text manipulation exists in many fields, such as e-commerce and Internet search. Deep metric learning methods are used by most researchers to calculate the similarity between the query and the candidate image by fusing the global feature of the query image and the text feature. However, the text usually corresponds to the local feature of the query image rather than the global feature. Therefore, in this paper, we propose a framework of image retrieval with text manipulation by local feature modification(LFM-IR) which can focus on the related image regions and attributes and perform modification. A spatial attention module and a channel attention module are designed to realize the semantic mapping between image and text. We achieve excellent performance on three benchmark datasets, namely Color-Shape-Size(CSS), Massachusetts Institute of Technology(MIT) States and Fashion200K(+8.3%, +0.7% and +4.6% in R@1).
作者 查剑宏 燕彩蓉 张艳婷 王俊 ZHA Jianhong;YAN Cairong;ZHANG Yanting;WANG Jun(College of Computer Science and Technology,Donghua University,Shanghai 201620,China;College of Fashion and Design,Donghua University,Shanghai 200051,China)
出处 《Journal of Donghua University(English Edition)》 CAS 2023年第4期404-409,共6页 东华大学学报(英文版)
基金 Foundation items:Shanghai Sailing Program,China (No. 21YF1401300) Shanghai Science and Technology Innovation Action Plan,China (No.19511101802) Fundamental Research Funds for the Central Universities,China (No.2232021D-25)。
  • 相关文献

参考文献1

二级参考文献1

共引文献1

同被引文献4

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部