期刊文献+

基于深度压缩感知的脑电情感识别

EEG Emotion Recognition Based on Deep Compressed Sensing
下载PDF
导出
摘要 【目的】传统压缩感知中存在观测矩阵对信号适应性和重构算法对字典依赖性的问题,深度压缩感知则利用深度学习的方法解决传统压缩感知中存在的问题。【方法】利用深度信念网络(DBN)能够在不破坏观测矩阵随机性的前提下对信号进行自适应压缩,同时利用栈式自编码器(SAE)可以端到端地训练重构网络来摆脱重构算法对稀疏字典的依赖性,根据信号的稀疏表示中所具有的判别性,提出基于DBN和SAE的压缩感知识别模型(CS-DBN-SAE)。【结果】在DEAP情感脑电数据库上的四分类实验结果表明,CS-DBN-SAE模型的识别率达到83.29%,相比于传统压缩感知识别模型均取得了4.3%以上的提升。 【Purposes】Deep compressed sensing is the use of deep learning to solve the prob-lems existing in traditional compressed sensing,such as the adaptability of observation matrix to traditional signal compression and the dependency on dictionary by reconstruction algorithm.【Methods】In this paper,the deep belief network(DBN)is used to adaptively compress the signal without destroying the randomness of observation matrix.At the same time,the stacked auto encoder(SAE)is used to train the reconstruction network end-to-end to get rid of the dependence of the reconstruction algorithm on sparse dictionary.According to the discrimination of the sparse representation of signal,a compressed sensing recognition model based on DBN and SAE is proposed(CS-DBN-SAE).【Findings】The results of four classification experiments on DEAP emotional EEG database show that the recognition rate of CS-DBN-SAE model is 83.29%,which is oven 4.3%higher than that of traditional compressed sensing recognition model.
作者 冯金鑫 张雪英 张静 陈桂军 黄丽霞 王夙喆 FENG Jinxin;ZHANG Xueying;ZHANG Jing;CHEN Guijun;HUANG Lixia;WANG Suzhe(College of Information and Computer,Taiyuan University of Technology,Jinzhong 030600,China)
出处 《太原理工大学学报》 CAS 北大核心 2023年第5期789-795,共7页 Journal of Taiyuan University of Technology
基金 山西省回国留学人员科研资助项目(HGKY2019025) 山西省研究生教育创新计划项目(2020BY130)。
关键词 压缩感知 深度信念网络 栈式自编码器 脑电信号 情感识别 compressed sensing deep belief network stacked auto encoder EEG signal emotion recognition
  • 相关文献

参考文献2

二级参考文献32

  • 1尹忠科,解梅,王建英.基于稀疏分解的图像去噪[J].电子科技大学学报,2006,35(6):876-878. 被引量:25
  • 2Kashin B. The Widths of Certain Finite Dimensional Sets and Classes of Smooth Functions[J]. Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya, 1977, 41(2): 334-351.
  • 3Donoho D L. Compressed Sensing[J]. IEEE Transactions on Information Theory, 2006, 52(4): 1289-1306.
  • 4Cand6s E J, Romberg J, Tao Terence. Robust Uncertainty Principles: Exact Signal Reconstruction from Highly Incomplete Frequency Information[J]. IEEE Transactions on Information Theory, 2006, 52(2): 489-509.
  • 5Rauhut H, Schass K, Vandergheynst P. Compressed Sensing and Redundant Dictionaries[J]. IEEE Transactions on Information Theory, 2008, 54(5): 2210-2219.
  • 6Baraniuk R, Steeghs P. Compressive Radar Imaging[C]//Proc. of IEEE Radar Conference. Houston, usA: IEEE Press, 2007: 128- 133.
  • 7Duarte M, Davenport M, Takbar D, et al. Single-pixel Imaging via Compressive Sampling[J]. IEEE Signal Processing Magazine, 2008, 25(2): 82-91.
  • 8Sheikh M, Milenkovic O, Baraniuk R. Designing Compressive Sensing DNA Microarrays[C]//Proc. of CAMPSAP'07. Washington D. C., USA: IEEE Press, 2007: 141-144.
  • 9Borgnat P, Flandrin P. Time-frequency Localization from Sparsity Constraints[C]//Proc. of IEEE International Conference on Acoustics, Speech, and Signal Processing. Piscataway, USA: IEEE Press, 2008: 3785-3788.
  • 10Willett R, Gehm M, Brady D. Multiscale Reconstruction for Computational Spectral Imaging[EB/OL]. [2011-04-12]. http:// people.ee.duke.edu/-wiUett/papers/WillettGehmBrady_Spectrallm CS.pdf.

共引文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部