期刊文献+

电感型光学超导转变边沿探测器件光学谐振腔设计

Design of Optical Resonant Cavities for Inductive Type Optical Superconducting Transition Edge Detector Devices
下载PDF
导出
摘要 为提高电感型光学超导转变边沿探测器件的探测效率,针对波长633 nm的光子,厚度15 nm的铌(Nb)膜光子吸收层,设计了一种基于Al全反射层、SiO2和SiNx减反层的谐振腔结构。通过仿真,选取低反射率参数分布区间,利用终点探测曲线作为谐振腔性能的判断依据,通过磁控溅射工艺和化学气相沉积工艺制备了谐振腔,并使用分光光度计测试了反射率,结果表明:制备的谐振腔可将633 nm光波反射率降低至0.9%,并对506~690 nm宽波段光也有良好的减反效果(反射率<1%)。 To improve the detection efficiency of the inductive optical superconducting transition edge detector devices,a resonant cavity structure based on an Al total reflection layer,SiO 2 and SiN x anti-reflection layer is designed and fabricated on a 15 nm niobium(Nb)film photon absorber layer for the 633 nm wavelength.The reflectivity is simulated with the Concise Macleod software and the layer structure of the resonant cavity for the lowest reflectivity is selected.The resonant cavity is prepared by a magnetron sputtering process and a following chemical vapor deposition process with an end point detection.The reflectivity is characterized by a spectrophotometer,which shows that the prepared resonant cavity can reduce the reflectivity at 633 nm to be only 0.9%,and also has good anti reflection effect,the reflectivity for from 506 nm to 690 nm to be<1%.
作者 王振宇 钟青 曾九孙 李劲劲 徐骁龙 王雪深 WANG Zhen-yu;ZHONG Qing;ZENG Jiu-sun;LI Jin-jin;XU Xiao-long;WANG Xue-shen(College of Metrology and Measurement Engineering,China Jiliang University,Hangzhou,Zhejiang 310018,China;National Institute of Metrology,Beijing 102200,China)
出处 《计量学报》 CSCD 北大核心 2023年第8期1159-1162,共4页 Acta Metrologica Sinica
基金 国家自然科学基金(61901432)。
关键词 计量学 超导转变边沿 超导Nb膜 反射率 光学谐振腔 化学气相沉积 磁控溅射 metrology superconducting transition edge superconducting Nb film reflectivity optical resonant cavity chemical vapor deposition magnetron sputtering
  • 相关文献

参考文献6

二级参考文献49

  • 1马爱文,曲兴华.SI基本单位量子化重新定义及其意义[J].计量学报,2020,41(2):129-133. 被引量:23
  • 2金桂,周继承.射频磁控溅射SiO_2薄膜的制备与性能研究[J].武汉理工大学学报,2006,28(8):12-15. 被引量:11
  • 3Semenov A, Gol'tsman G, Sobolewski R. Supercond Sci and Tech[J], 2002, 15:R1.
  • 4Golt'sman G, Smirnov K, Kouninov et al. IEEE Trans on Appl Supercond [J], 2003, 13(2): 192.
  • 5Peroz C, Degardin, Villegier J et al. IEEE Trans on Appl Supercond[J], 2007, 17(2): 637.
  • 6Trifonov V, Karasik B, Zorin M et al. Appl Phys Lett[J], 1996, 68(10): 1418.
  • 7Cherednichenko A, Drakinskiy V, Ueda K et al. Appl Phys Lett[J], 2007, 90:023507.
  • 8You L, Yurgens A, Winkler D et al. JAppl Phys[J], 2005, 98: 033913.
  • 9You L, Yurgens A, Winkler D et al. Supercond Sci and Tech[J], 2006, 19:S205.
  • 10Kadin A, Johnson M.Appl Phys Lett[J], 1996, 69(25): 3938.

共引文献32

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部