期刊文献+

基于未知参数混沌的变轴自适应旋转同步

Adaptive rotation synchronization of variable axis based on unknown parameter chaos
下载PDF
导出
摘要 目前,被广泛应用的完全同步方案存在着控制参数空间小、系统复杂度低等问题。针对该问题并根据罗德里格斯旋转公式设计一种可变轴旋转同步方法。对该方法中响应系统存在的不可避免的参数未知情况进行了研究,并采用基于自适应同步的方式设计参数辨识控制律,对未知参数进行辨识估计。结合上述方案,对基于未知参数情况下混沌系统的变轴自适应旋转同步的设计方案进行研究。基于该同步方法,引入时变量,进一步构建时变轴自适应旋转同步方法。分别对以上方法进行数值仿真,以验证方法的有效性。 Aiming at the problems existing in the current complete synchronization scheme which was widely applied in the chaotic synchronization scheme,such as relatively small control parameter space,relatively low system complexity.A variable axis rotation synchronization method based on the generalized synchronization principle and Rodrigues rotation formula was designed.In addition,the inevitable situation of unknown parameters in the response system in this method was researched,and the parameter identification control law based on adaptive synchronization is designed to identify and estimate the unknown parameters.Combined with the above scheme,the design scheme of variable-axis adaptive rotation synchronization of chaotic system based on unknown parameters was studied.Based on this synchronization method,an adaptive rotation synchronization of time-varying axis method is further constructed by introducing time variables.And the numerical simulation of the above methods was carried out to verify the effectiveness of the above methods.
作者 许梓杰 李丹 王尔馥 XU Zi-Jie;LI Dan;WANG Er-Fu(School of Electronic Engineering,Heilongjiang University,Harbin 150080,China)
出处 《黑龙江大学工程学报(中英俄文)》 2023年第3期37-46,F0003,共11页 Journal of Engineering of Heilongjiang University
基金 国家自然科学基金项目(61102071) 黑龙江省自然科学基金引导项目(LH2019F048)。
关键词 混沌同步 自适应同步 广义同步 旋转同步 chaos synchronization adaptive synchronization generalized synchronization rotation synchronization
  • 相关文献

参考文献10

二级参考文献72

  • 1王兴元,刘明.用滑模控制方法实现具有扇区非线性输入的主从混沌系统同步[J].物理学报,2005,54(6):2584-2589. 被引量:36
  • 2徐鉴,裴利军.时滞系统动力学近期研究进展与展望[J].力学进展,2006,36(1):17-30. 被引量:66
  • 3Grassberger, P. , & I. Procaccia, 1983, Characterization of strange attractors[ J]. Physical Review Letters, 50:346- 349.
  • 4Grossman, Sanford J. , & Joseph E. Stiglitz, 1980, On the impossibility of informationally efficient markets[J]. Americian Economic Review, 70(3) : 393 -408.
  • 5Hagtvedt, Reidar, 1999, Chaos in Stock Returns [ D ]. A Doctorial Dissertation, Robinson College of Business of Georgia State University.
  • 6Hsieh, David A. , 1989. Modeling heteroscedasticity in daily foreign -exchange rates[ J ], Journal of Business Economic Statistics, 7:307-317
  • 7Hsieh, David A. , 1991, Chaos and nonlinear dynamics: application to financial markets[J]. Journal of Finance, 46(5): 1839 - 1877.
  • 8Li, T. , & J. A. York, 1975, Period three implies chaos[J]. American Mathematical Monthly, 82:985 -992.
  • 9Lo, Andrew W. , & A. Craig Mackinlay, 1988, Stock market prices do not follow random walk : evidence from a simple specification test [ J ]. Review of Financial Studies, 1 (1) : 41 -46.
  • 10Mahajan, A. , & Andrew J. Wagner, 1999, Nonlinear dynamics in foreign exchange rates[J]. Global Finance Journal, 10(1) : 1-23.

共引文献187

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部