期刊文献+

利用时频相关性的球谐波阶数感知鲁棒伪声强多声源定位

Localization of multiple speakers in the spherical harmonic domain by robust order-aware pseudo-intensity vectors exploiting time-frequency correlation
下载PDF
导出
摘要 针对伪声强多声源定位方法对环境噪声和混响敏感的问题,利用时频相关性构造球谐波阶数感知因子,提出了一种鲁棒的伪声强声源定位方法。与现有的球谐波阶数感知因子不同,所构造的球谐波阶数感知因子充分利用了相邻时频点中属于同一声源的特征波束间存在的相关性。理论分析表明,所构造的球谐波阶数感知因子对环境噪声和混响的抑制能力更强。仿真结果显示,与现有的阶数感知方法相比,在信噪比为10 dB、混响时间为0.4~1.0 s时,所提方法的定位精度提升了1.3°~1.9°,同时计算复杂度减小了25%。最后通过实测实验进一步验证了所提方法在实际声场环境中的有效性。 Multiple sound source localization using pseudo-intensity vector is known sensitive to noise and room reverberation.To deal with the problem,a robust sound localization approach is proposed using pseudo-intensity vector via constructing an orderaware factor of spherical harmonics(OAFSH)by employing signal correlation property in the time-frequency domain.Unlike its existing counterpart,the proposed OAFSH fully takes advantage of the correlation of the eigenbeams that belong to the same source between adjacent time-frequency bins.Theoretical analysis shows that the proposed OAFSH performs better than the existing counterpart in suppressing noise and room reverberation.Simulation results demonstrate that the sound source localization accuracy of the proposed approach is 1.3°~1.9°higher than that of the existing approach under the condition of a 10 dB signal to noise ratio and reverberation time of 0.4~1.0 s.Moreover,the computational complexity of the proposed approach is also reduced by 25%.Finally,the effectiveness of the proposed approach is further verified by the real-world experiments in practical room environment.
作者 高伟霞 陈华伟 GAO Weixia;CHEN Huawei(College of Electronic and Information Engineering,Nanjing University of Aeronautics and Astronautics Nanjing 211106;College of Electrical and Electronic Engineering,Anhui Science and Technology University Bengbu 233030)
出处 《声学学报》 EI CAS CSCD 北大核心 2023年第5期1045-1059,共15页 Acta Acustica
基金 国家自然科学基金项目(61971219,61471190) 安徽高校自然科学研究重点项目(KJ2020A0076)资助。
关键词 球面传声器阵列 声源定位 阶数感知 球谐波 时频相关性 Acoustic spherical array Speaker localization Order-aware Spherical harmonics Time-frequency correlation
  • 相关文献

参考文献4

二级参考文献23

  • 1Rafaely B, Weiss B, Bachmat E. Spatial aliasing in spheri- cal microphone arrays. IEEE Trans. Signal Process., 2007; 55(3): 1003-1010.
  • 2Rafaely B, Balmages I, Eger L. High-resolution plane-wave decomposition in an auditorium using a dual-radius scanning spherical microphone array. J. Acoust. Soc. Am., 2007; 122(5): 2661 2668.
  • 3Rafaely B, Kleider M. Spherical microphone array beam steering using Wigner-D weighting. IEEE Signal Process. Lett., 2008; 15:417-420.
  • 4Li Z Y, Duraiswami R. Flexible and optimal design of spherical microphone arrays for beamforming. IEEE Trans. Audio Speech Lang. Process., 2007; 15(2): 702- 714.
  • 5Yan S, Hou C, Ma X, Ma Y. Convex optimization based time-domain broadband beamforming with sidelobe control. J. Acoust. Soc. Am., 2007; 121(1): 46-49.
  • 6Yan S, Ma Y, Hou C. Optimal array pattern synthesis for broadband arrays. J. Acoust. Boc. Am., 2007; 122(5): 2686-2696.
  • 7Driscoll J R, Healy Jr. D M. Computing Fourier Transforms and Convolutions on the 2-Sphere. Adv. Appl. Math., 1994; 15(2): 202-250.
  • 8Yan S, Sun H, Svensson U P, Ma X, Hovem J M. Optimal modal beamforming for spherical microphone arrays. IEEE Trans. Audio Speech Lang. Process., 2011; 19(2): 361-371.
  • 9Teutsch H. Modal Array signal processing: principles and applications of acoustic wavefield decomposition. Berlin Heidelberg: Springer-Verlag, 2007.
  • 10Williams E G. Fourier acoustics: sound radiation and nearfield acoustical holography. New York: Academic Press, 1999.

共引文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部