期刊文献+

基于多传感器协同的自适应联邦滤波跟踪算法

Adaptive Federated Filtering Tracking Algorithm Based on Multi-Sensor Redundant Data
原文传递
导出
摘要 为了充分利用多传感器的冗余信息实现高精度跟踪,提出了一种带有离群点检测的冗余信息自适应联邦滤波跟踪算法。首先,在信息分配阶段,针对冗余信息设计了一种自适应信息分配因子,提高了信息分配效率;其次,在信息融合阶段,为了降低误差数据对跟踪结果的影响,提出了一种离群点检测算法,针对存在相关性且服从高斯分布的数据,通过D-S证据理论综合所有滤波器的判断评估数据是否为离群数据;最后,使用线性最小方差估计进行融合,得到更为精确的最终估计结果。仿真验证了所提算法具有更好的跟踪精度和鲁棒性。 In order to make full use of redundant data of multiple sensors to achieve high-precision tracking,an redundant data adaptive federated Kalman filter algorithm with outlier detection is proposed based on redundant measurement data.First,in the information distribution stage,an adaptive information sharing factor is designed for redundant information,which improves the information distribution efficiency.Secondly,in the information fusion stage,in order to reduce the influence of error data on tracking results,an outlier detection algorithm is proposed,which combines the judgment results of all filters through D-S evidence theory to evaluate whether the data is outlier data.Finally,the linear least square method is used to fuse and obtain a more accurate final estimation result.The simulation results show the proposed algorithm has better tracking accuracy and robustness than the existing models.
作者 刘金铭 张碧玲 张玉艳 LIU Jinming;ZHANG Biling;ZHANG Yuyan(School of Network Education,Beijing University of Posts and Telecommunications,Beijing 100876,China)
出处 《北京邮电大学学报》 EI CAS CSCD 北大核心 2023年第4期21-26,共6页 Journal of Beijing University of Posts and Telecommunications
基金 国家自然科学基金项目(62171060)。
关键词 联邦滤波 协同跟踪 D-S证据理论 离群检测 federated filtering collaborative tracking D-S evidence theory outlier detection
  • 相关文献

参考文献1

二级参考文献6

  • 1Cheong J W. Towards multi-constellation collective detec- tion for weak signals: A comparative experimental analy- sis [ C ] // 24th International Technical Meeting of the Satellite Division of the Institute of Navigation 2011. Portland : Institute of Navigation, 2011 : 3709-3719.
  • 2Rizos C, Roberts G, Barnes J, et al. Experimental re- suits of Locata: A high accuracy indoor positioning system [ C]// 2010 International Conference on Indoor Positio- ning and Indoor Navigation. Zurich, Switzerland : IEEE, 2010 : 1-7.
  • 3Farshid A S. WiFi localization: market, technology, and future [ C ]// 23th International Technical Meeting of the Satellite Division of the Institute of Navigation 2010, Port- land: Institute of Navigation, 2010 : 1761-1778.
  • 4Messaoudi Z, Ouldali A, Oussalah M. Comparison of in- teractive multiple model particle filter and interactive mul- tiple model unscented particle filter for tracking multiple manoeuvring targets in sensors array[ C] //2010 IEEE 9th International Conference on Cybernetic Intelligent Systems. Reading, Great Britain: IEEE, 2010 : 1-6.
  • 5卢恒惠,张盛,汪浩,林孝康.基于联邦Kalman滤波的Wi-Fi/GPS车辆组合定位系统[J].清华大学学报(自然科学版),2011,51(3):420-423. 被引量:3
  • 6邓中亮,余彦培,袁协,万能,杨磊.Situation and Development Tendency of Indoor Positioning[J].China Communications,2013,10(3):42-55. 被引量:82

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部