期刊文献+

SCADA Data-Based Support Vector Machine for False Alarm Identification for Wind Turbine Management

下载PDF
导出
摘要 Maintenance operations have a critical influence on power gen-eration by wind turbines(WT).Advanced algorithms must analyze large volume of data from condition monitoring systems(CMS)to determine the actual working conditions and avoid false alarms.This paper proposes different support vector machine(SVM)algorithms for the prediction and detection of false alarms.K-Fold cross-validation(CV)is applied to evaluate the classification reliability of these algorithms.Supervisory Control and Data Acquisition(SCADA)data from an operating WT are applied to test the proposed approach.The results from the quadratic SVM showed an accuracy rate of 98.6%.Misclassifications from the confusion matrix,alarm log and maintenance records are analyzed to obtain quantitative information and determine if it is a false alarm.The classifier reduces the number of false alarms called misclassifications by 25%.These results demonstrate that the proposed approach presents high reliability and accuracy in false alarm identification.
出处 《Intelligent Automation & Soft Computing》 SCIE 2023年第9期2595-2608,共14页 智能自动化与软计算(英文)
基金 supported financially by the Ministerio de Ciencia e Innovación(Spain)and the European Regional Development Fund under the Research Grant WindSound Project(Ref.:PID2021-125278OB-I00).
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部