期刊文献+

FIDS:Filtering-Based Intrusion Detection System for In-Vehicle CAN

下载PDF
导出
摘要 Modern vehicles are equipped with multiple Electronic Control Units(ECUs)that support various convenient driving functions,such as the Advanced Driver Assistance System(ADAS).To enable communication between these ECUs,the Controller Area Network(CAN)protocol is widely used.However,since CAN lacks any security technologies,it is vulnerable to cyber attacks.To address this,researchers have conducted studies on machine learning-based intrusion detection systems(IDSs)for CAN.However,most existing IDSs still have non-negligible detection errors.In this paper,we pro-pose a new filtering-based intrusion detection system(FIDS)to minimize the detection errors of machine learning-based IDSs.FIDS uses a whitelist and a blacklist created from CAN datasets.The whitelist stores the cryptographic hash value of normal packet sequences to correct false positives(FP),while the blacklist corrects false negatives(FN)based on transmission intervals and identifiers of CAN packets.We evaluated the performance of the proposed FIDS by implementing a machine learning-based IDS and applying FIDS to it.We conducted the evaluation using two CAN attack datasets provided by the Hacking and Countermeasure Research Lab(HCRL),which confirmed that FIDS can effectively reduce the FP and FN of the existing IDS.
机构地区 Department of Software
出处 《Intelligent Automation & Soft Computing》 SCIE 2023年第9期2941-2954,共14页 智能自动化与软计算(英文)
基金 supported by the National Research Foundation of Korea(NRF)grant funded by the Korean government(MSIT)(No.NRF-2021R1A4A1029650).
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部