期刊文献+

位置位图:海量时空数据的预处理模型与实现

Location Bitmaps:Model and Implementation of Massive Spatio-temporal Data Preprocessing
下载PDF
导出
摘要 时空轨迹大数据蕴含着丰富的信息,值得深入挖掘探索。对海量时空轨迹数据的有效挖掘、利用依赖于完善的数据预处理模型。为解决多源融合、误差容错和性能优化等挑战,本文提出了位置位图模型。位置位图模型基于抽象的离散时空观建立概念构件体系,并在概念构件体系中定义运算算子体系,从而形成完整的时空预处理能力。本文还提出了位置位图模型在实际数据库系统中的具体的编码实现方法,该方法包括位区编码、时段选择、位串编码、运算实现和位图数据维护等环节。位置位图模型被用于改造真实的“经纬”时空大数据分析系统,改造效果表明位置位图模型不仅能够改善业务开发难度,还可以优化计算性能,降低存储开销。 discrete spatio-temporal view to establish a conceptual component system and defines an operation operator system in the conceptual component system,which can be expanded into a complete spatio-temporal preprocessing capability.This paper also proposes a specific encoding implementation method of the location bitmap model in practical database systems,which includes bit region coding,time period selection,bit string coding,operation implementation,and bitmap data maintenance.The location bitmap model is used to transform a real“Jingwei”spatio-temporal big data analysis system,and the transformation effect proves that the bitmap model can not only improve business development difficulty but also optimize computing performance and reduce storage costs.
作者 李明哲 吕宁 黄亮 LI Mingzhe;LYU Ning;HUANG Liang(National Computer Network Emergency Response Technical Team/Coordination Center of China,Beijing,100094,China;Chang’an Communication Technology Co.,Ltd.,Beijing,102209,China)
出处 《网络新媒体技术》 2023年第4期16-22,共7页 Network New Media Technology
关键词 时空数据 空间轨迹 位图 轨迹压缩 数据预处理 spatio-temporal data space trajectory location bitmap trajectory compression data preprocessing
  • 相关文献

参考文献3

二级参考文献54

  • 1DOUGLAS D H,PEUCKER T K.Algorithms for the reduction of the number of points required to represent a digitized line or its caricature[J].Cartographica:The International Journal for Geographic Information and Geovisualization,1973,10(2):112-122.
  • 2KEOGH E,CHU S,HART D,et al.An online algorithm for segmenting time series[C]//Proceedings of the IEEE International Conference on Data Mining.IEEE,2001:289-296.
  • 3POTAMIAS M,PATROUMPAS K,SELLIS T.Sampling trajectory streams with spatiotemporal criteria[C]//Proceedings of the 18th IEEE International Conference on Scientific and Statistical Database Management.IEEE,2006:275-284.
  • 4LERIN P M,YAMAMOTO D,Takahashi N.Encoding travel traces by using road networks and routing algorithms[M]//Intelligent Interactive Multimedia:Systems and Services.Berlin:Springer,2012:233-243.
  • 5KELLARIS G,PELEKIS N,THEODORIDIS Y.Trajectory compression under network constraints[M]//Advances in Spatial and Temporal Databases.Berlin:Springer,2009:392-398.
  • 6KELLARIS G,PELEKIS N,THEODORIDIS Y.Map-matched trajectory compression[J].Journal of Systems and Software,2013,86(6):1566-1579.
  • 7SONG R,SUN W,ZHENG B,et al.PRESS:A novel framework of trajectory compression in road networks[C]//Proceedings of the 40th International Conference on Very Large Data Bases.ACM,2014:1402-1546.
  • 8MUCKELL J,HWANG J H,LAWSON C T,et al.Algorithms for compressing GPS trajectory data:An empirical evaluation[C]//Proceedings of the 18th SIGSPATIAL International Conference on Advances in Geographic Information Systems.ACM,2010:402-405.
  • 9SCHMID F,RICHTER K F,LAUBE P.Semantic trajectory compression[M]//Advances in Spatial and Temporal Databases.Berlin:Springer,2009:411-416.
  • 10RICHTER K F,SCHMID F,LAUBE P.Semantic trajectory compression:Representing urban movement in a nutshell[J].Journal of Spatial Information Science,2014(4):3-30.

共引文献30

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部