摘要
随着现代医疗水平的快速提高,医疗废弃物品的处理问题显得尤为重要.本文针对医疗废弃物品的无接触收集问题,设计了一种医疗废弃物品收集小车.通过OpenMV搭配自行训练的MobileNet神经网络模型对废弃物品进行实时识别、定位,并进行抓取操作.实验结果表明,小车能够以较高的识别率识别出已训练过的物品并能对其进行准确抓取,较好地应对医疗废弃物处置问题.
With the rapid improvement of modern medicare,the handling of medical waste has become especially important.Focusing on the contactless collection of medical waste,this research designed a kind of medical waste collection vehicle.By using the OpenMV with a self-trained MobileNet neural network model,medical waste can be recognized,located and grabbed in real time.The experimental results show that the vehicle can identify trained items with a high recognition rate and grab them correctly,effectively addressing the problem of medical waste treatment.
作者
钱铖
沈凯文
王淳
王小英
QIAN Cheng;SHEN Kaiwen;WANG Chun;WANG Xiaoying(School of Electrical Engineering and Automation,Changshu Institute of Technology,Changshu 215500,China)
出处
《常熟理工学院学报》
2023年第5期51-56,66,共7页
Journal of Changshu Institute of Technology