期刊文献+

基于信息融合的多列卷积神经网络异常驾驶研究

Research on abnormal driving in multi⁃column convolutional neural networks based on information fusion
下载PDF
导出
摘要 针对传统卷积神经网络(CNN)在异常驾驶检测方面识别率低、处理能力差的问题。对异常驾驶状态进行研究,提出了一种基于信息融合的多列卷积神经网络用来检测异常驾驶状态。首先建立三个卷积局部感受野核大小不同的CNN,然后将三列卷积神经网络卷积特征图进行融合,最后,融合的卷积特征图通过全连接层进行降维,输出不同的驾驶行为。实验结果表明,该方法相对于传统的卷积神经网络取得了更高的准确性、鲁棒性。在state farm distracted driver detection数据集上识别率达到了89.8%。 The traditional convolutional neural network(CNN)has a low recognition rate and poor processing ability in abnormal driving detection methods.The abnormal driving state is studied,and a multi‑column convolutional neural network based on information fusion is proposed to detect the abnormal driving state.First,three CNNs with different sizes of convolutional local Receptive field nuclei are established,and the three‑column convolutional neural network convolution feature map is fused.Finally,the fused convolutional feature map is dimensionally reduced through the full connection layer,and different driving behaviors are output.The analysis of experimental results shows that this method achieves higher accuracy and robustness compared to traditional convolutional neural networks.The recognition rate on the state farm dispersed driver detection dataset reached 89.8%.
作者 王富强 龙涛 Wang Fuqiang;Long Tao(Information Engineering College of Xi’an Mingde Institute of Technology,Xi’an 710100,China)
出处 《现代计算机》 2023年第14期19-22,共4页 Modern Computer
关键词 异常驾驶 信息融合 卷积神经网路 深度学习 abnormal driving information fusion convolutional neural network deep learning
  • 相关文献

参考文献2

二级参考文献17

  • 1成波,冯睿嘉,张伟,李家文,张希波.基于多源信息融合的驾驶人疲劳状态监测及预警方法研究[J].公路交通科技,2009(S1):13-18. 被引量:8
  • 2毛勇,周晓波,夏铮,尹征,孙优贤.特征选择算法研究综述[J].模式识别与人工智能,2007,20(2):211-218. 被引量:95
  • 3Wierwille W W,Ellsworth L A,Wreggit S S,et al.Research onVehicle-Based Driver Status/Performance Monitoring; Development,Validation,and Refinement of Algorithms for Detection of Driver Drowsiness[R].US Department of Transportation,National Highway Traffic Safety Administration:DOT HS 808 247,1994.
  • 4Sigmund G P,King D J,Mumford D K.Correlation of Heavy-Truck Driver Fatigue with Vehicle-Based Control Measures[C].SAE Paper 952594.
  • 5Eskandarian A,Mortazavi A.Evaluation of a Smart Algorithm for Commercial Vehicle Driver Drowsiness[C].Detection Proceedings of the 2007 IEEE Intelligent Vehicles Symposium,2007:553-559.
  • 6Berglund Jens.In-Vehicle Prediction of Truck Driver Sleepinesssteering Wheel Variables[D].Link(o)ping:Link(o)pingUniversitet,2007.
  • 7Mattson Kristina.h-Vehicle Prediction of Truck Driver Sleepinesslane Position Variables[D].Sodertalje:Lulea University of Technology,2007.
  • 8Friedrichs F,Yang B.Drowsiness Monitoring by Steering and Lane Data Based Features Under Real Driving Conditions[C].18th European Signal Processing Conference,2010:209-213.
  • 9Sandberg D,Akerstedt T,Anund A,et al.Detecting Driver Sleepiness Using Optimized Nonlinear Combinations of Sleepiness Indicators[J].IEEE Transactions on intelligent Transportation Systems,2011,12:97-108.
  • 10ChangC C,LinCJ.LIBSVM:A Library for Support Vector Machines[EB/OL].2001.http://www.csie.ntu,edu.tw/-cjlin/libsvm.

共引文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部