期刊文献+

基于控制场的高精度相机标定技术研究

Research on high-precision camera calibration technique based on control field
下载PDF
导出
摘要 相机标定是高精度视觉测量的基础,是视觉测量的关键技术。相机参数的标定精度直接影响最终的测量精度。针对大视场的高精度测量,文章提出了一种基于控制场的相机标定方法。首先,通过构建相机参数求解模型,利用DLT(直接线性变换法)获得相机参数初值,再利用L-M最优化方法求解最优化模型参数即要标定的相机参数。本标定方法的标定结果平均反投影误差达到0.1个像素点,表明本标定算法具有很高的标定精度,可以满足视觉测量的高精度测量需求,在工业测量中具有较高的使用价值。 Camera calibration is the basis for high-precision vision measurement,and is the key technology of vision measurement.The accuracy of camera parameters directly affects the final measurement accuracy.For high-precision measurement of large field of view,this paper proposes a method for the camera calibration based on control field.First,by building a model of camera parameters to solve,use DLT(direct linear transformation)to obtain initial parameters of the camera,then use L-M optimization method for solving the optimization model parameter that is to be calibrated camera parameters.Results show that the average back-projection error can reach to 0.1 pixels by using the calibration method,and show that the calibration algorithm has high calibration accuracy to meet the needs of high-precision vision measurement,which has a high value in the industrial measurement.
作者 陈洋 Chen Yang(Luoyang Institute of Electro-Optical Equipment,AVIC,Luoyang 471000,China)
出处 《无线互联科技》 2023年第14期116-119,共4页 Wireless Internet Technology
关键词 相机参数 相机标定 控制场 最优化模型 大视场视觉测量 L-M算法 camera parameters camera calibration control field optimization model large field visual measurement L-M algorithm
  • 相关文献

参考文献2

二级参考文献22

  • 1叶东,刘长英,车仁生,陈刚.基于遗传算法的像机虚拟立体校准技术研究[J].光学精密工程,2006,14(3):485-489. 被引量:13
  • 2叶东,徐巧玉,车仁生.视觉测量系统的相机校准(英文)[J].光学精密工程,2006,14(5):883-890. 被引量:30
  • 3陈华,叶东,车仁生,陈刚.基于精确控制点的立体像机校准技术(英文)[J].光学精密工程,2006,14(5):903-909. 被引量:19
  • 4Chen J,Olarke T A,Robson S. Alternative to the epipolarline method for automatic target matching in multiple ima- ges 3D measurement. Optical 3D Measurement Tech- niques II, Applications in Inspection, Quality Control, and Robotics: International Society for Optics and Photonics, 1994,197-204.
  • 5Armangu6 X, Salvi J. Overall view regarding fundamental matrix estimation[J]. Image and vision computing, 2003, 21 : 205-220.
  • 6Hartley R, Zisserman A. Multiple view geometry in com- puter vision: Cambridge Univ Press, 2000.
  • 7Zhang Z. Determining the epipolar geometry and its un- certainty: a review[J]. International Journal of Computer Vision, 1998,27 : 161-95.
  • 8Shortis M R,Olarke T A,Short T. A comparison of some techniques for the subpixel location of discrete target im- ages[J]. Proc SPIE[C]. 1994,239-50.
  • 9Ahn S J,Rauh W, Recknagel M. Circular coded landmark for optical 3D-measurement and robot vision, intelligent Robots and Systems, 1999 IROS" 99 Proceedings 1999 IEEE/RSJ International Conference on: IEEE, 1999,1128- 1133.
  • 10Alexandre B, Patrick L C, et al. Quality assessment of stereoscopic images[J]. EURASIP journal on image and video processing, 2009,2008.

共引文献60

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部