期刊文献+

基于城市天际线的遥感视频生产与交通信息提取 被引量:1

Remote Sensing Video Production and Traffic Information Extraction Based on Urban Skyline
原文传递
导出
摘要 传统交通信息获取方法较难获取大范围、全覆盖的实时动态交通流信息,提出一种利用城市天际线作为观测平台的城市遥感视频生产与交通信息提取方法。首先,在超高层建筑物拍摄对地观测数据;然后,对原始倾斜视频观测数据进行正射校正,与卫星影像融合生成大范围城市遥感视频数据;最后,训练深度学习模型进行车辆分类识别,基于识别结果计算区域车辆数目及密度。在深圳平安大厦观光层开展数据采集并处理分析,结果表明,所提方法可生产低成本、长时间、大范围、高质量的城市遥感视频,基于该遥感视频开展的车辆检测误识别率和漏识别率低,车辆计数准确率高,可对区域交通流量进行有效监控,准确实时地获取城市内部区域交通情况。 Objectives:It is difficult for the traditional traffic information acquisition method to obtain the real-time dynamic traffic flow information of large scope and full coverage.With urbanization,the increasing number of supertall buildings makes the city skyline a favorable platform for earth observation.This paper studies the urban remote sensing video production and traffic information extraction method using the urban skyline as the observation platform.Methods:First,the earth observation data shooting is carried out in the super-tall buildings.Then,the original oblique observation data is corrected by orthography,which is further fused with the satellite image to generate a large range of remote sensing video data of the city.Finally,we train a deep learning model and use it for vehicle classification and identification.The number and density of vehicles in the area are calculated based on the identification results.Results:This paper carries out data collection and processing analysis on the sightseeing floor of Ping,an Building in Shenzhen.Results show that the proposed method can produce low-cost,long-time,large-scale and highquality urban remote sensing video.The vehicle detection based on the remote sensing video have high accuracy.Conclusions:The proposed framework can be used to effectively monitor the regional traffic flow and sever for the smart city management.Furthermore,based on its capability of long-time,high-resolution,full-coverage and real-time remote sensing,this method can also be applied to many other urban management fields,such as urban disaster emergency response,crowd monitoring,and construction site monitoring.
作者 汪驰升 王乐涵 张涓 叶艾温 钟国熙 王永全 崔红星 李清泉 WANG Chisheng;WANG Lehan;ZHANG Juan;YE Aiwen;ZHONG Guoxi;WANG Yongquan;CUI Hongxing;LI Qingquan(Key Laboratory for Geo‑Environmental Monitoring of Great Bay Area,MNR,Shenzhen University,Shenzhen 518061,China;Guangdong Laboratory of Artificial Intelligence and Digital Economy(SZ),Shenzhen 518000,China;Guangdong Key Laboratory of Urban Informatics,Shenzhen University,Shenzhen 518061,China;Shenzhen Key Laboratory of Spatial Smart Sensing and Services,Shenzhen University,Shenzhen 518061,China;The HongKong University of Science and Technology,HongKong 999077,China)
出处 《武汉大学学报(信息科学版)》 EI CAS CSCD 北大核心 2023年第9期1490-1498,共9页 Geomatics and Information Science of Wuhan University
基金 国家重点研发计划(2020YFC1512001) 国家自然科学基金(41974006) 人工智能与数字经济广东省实验室(深圳)开放课题(GML-KF-22-15) 深圳市科创委研究项目(RCYX20210706092140076,20200812164904001)。
关键词 天际线 对地观测 遥感视频 交通流量监控 深度学习 urban skyline land observation remote sensing video traffic flow monitoring deep learning
  • 相关文献

参考文献9

二级参考文献102

共引文献972

同被引文献7

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部