摘要
在新兴的自旋轨道角动量光子技术领域,对兼具强二次谐波和大双折射的非线性光学晶体有很大的需求.基于此,本文采用具有大π共轭效应的[HC_(3)N_(3)S_(3)]_(2)−和碱金属阳离子K+相结合,成功合成了一例新型类β-BaB_(2)O_(4)(BBO)手性三聚硫氰酸盐K_(4)(HC_(3)N_(3)S_(3))_(2)·H_(2)O(1).与具有最优排列的π共轭[B3O6]3−环的BBO相比,1中[HC_(3)N_(3)S_(3)]_(2)−环的排列并不理想,但倍频响应和双折射显著增强(1.8×BBO;Δn=0.402@550 nm,~3.3×BBO).第一性原理计算分析表明,π共轭[HC_(3)N_(3)S_(3)]_(2)−环是产生优异光学性能的根本原因.这项工作证明了π共轭[HC_(3)N_(3)S_(3)]_(2)−是优秀的双功能“材料基因”,在新兴光子技术的光学集成器件研究中值得更多的关注.
There is presently a great demand for nonlinear optical(NLO)crystals that can demonstrate both strong second-harmonic generation(SHG)and high birefringence in emerging spin-orbit angular momentum photonic technologies.Here we report a new chiral trithiocyanate compound,K_(4)(HC_(3)N_(3)S_(3))_(2)·H_(2)O,which is composed of highlyπ-conjugated[HC_(3)N_(3)S_(3)]_(2)−rings and is structurally analogous to commercial NLO crystalβ-BaB_(2)O_(4)(BBO).Compared with BBO,which has optimally arrangedπ-conjugated[B3O6]3−rings,K_(4)(HC_(3)N_(3)S_(3))_(2)·H_(2)O does not have an optimal arrangement of[HC_(3)N_(3)S_(3)]_(2)−rings.However,this trithiocyanate exhibits a significantly enhanced SHG response of up to 1.8 times that of BBO and an enhanced birefringence of up to 0.402 at the wavelength of 550 nm(about 3.3 times that of BBO).The firstprinciples calculations show that theπ-conjugated[HC_(3)N_(3)S_(3)]_(2)−is the cause of the superior optical properties of K_(4)(HC_(3)N_(3)S_(3))_(2)·H_(2)O.These findings demonstrate that theπ-conjugated[HC_(3)N_(3)S_(3)]_(2)−is an excellent bi-functional“material gene”and merits more attention in the study of optical integrated devices for emerging photonic technologies.
作者
许倩婷
刘有超
吴清宸
侯琳熙
李雁强
李丽娜
林哲帅
赵三根
罗军华
Qianting Xu;Youchao Liu;Qingchen Wu;Linxi Hou;Yanqiang Li;Lina Li;Zheshuai Lin;Sangen Zhao;Junhua Luo(Qingyuan Innovation Laboratory,Quanzhou 362801,China;Department of Materials-Oriented Chemical Engineering,School of Chemical Engineering,Fuzhou University,Fuzhou 350116,China;State Key Laboratory of Structural Chemistry,Fujian Institute of Research on the Structure of Matter,Chinese Academy of Sciences,Fuzhou 350002,China;Technical Institute of Physics and Chemistry,Chinese Academy of Sciences,Beijing 100190,China;University of Chinese Academy of Sciences,Beijing 100049,China;Fujian Science&Technology Innovation Laboratory for Optoelectronic Information of China,Fuzhou 350108,China)
基金
This work was financially supported by the National Natural Science Foundation of China(22122507,21833010,61975207,22193042,and 21921001)
the Natural Science Foundation of Fujian Province(2022J02012)
the Youth Innovation Promotion Association of the Chinese Academy of Sciences(Y202069)
the Key Research Program of Frontier Sciences of the Chinese Academy of Sciences(ZDBS-LY-SLH024)
as well as Fujian Institute of Innovation(FJCXY18010201)in the Chinese Academy of Sciences.