期刊文献+

类严格反馈系统的模糊弱扰动解耦控制

Fuzzy weak disturbance decoupling for strict feedback-like systems
原文传递
导出
摘要 大多数实际系统含有不确定项,且受到扰动的影响.采用模糊逻辑方法估计不确定项是降低不确定性影响的常见方法之一,而模糊近似扰动解耦是抑制扰动影响的主要手段.模糊近似扰动解耦对应的增益不等式包含无界项,所以无实际价值,为此提出模糊弱扰动解耦的控制方法.该方法采用模糊万能逼近定理估计不确定项,利用反步法设计控制器使得闭环系统具有弱扰动解耦性能,即闭环系统稳定且输出的范数不大于正常数加上扰动范数与正常数之积.仿真结果验证了模糊弱扰动解耦控制器能够保证闭环系统的弱扰动解耦性能. All real control systems are affected by uncertainties and disturbances.It is common practice to estimate uncertainties by fuzzy logic systems.Fuzzy approximate disturbance decoupling is one of the methods to attenuate the impact of disturbances.The gain inequality of fuzzy approximate disturbance decoupling contains an infinite term,so it has no practical value.Thus,the concept of fuzzy weak disturbance decoupling is proposed.A fuzzy weak disturbance decoupling problem is to find a feedback controller so that the closed-loop system has weak disturbance decoupling performance,that is,the closed-loop system is stable and the norm of the output is not greater than the sum of a positive constant and the product of the norm of the disturbance and a positive constant.Finally,the effectiveness of the proposed method is verified through a numerical example.
作者 刘晓平 王娜 刘存根 LIU Xiao-ping;WANG Na;LIU Cun-gen(School of Information and Electrical Engineering,Shandong Jianzhu University,Jinan 250101,China;Faculty of Engineering,Lakehead University,Thunder Bay ON P7B 5E1,Canada)
出处 《控制与决策》 EI CSCD 北大核心 2023年第8期2122-2129,共8页 Control and Decision
基金 2022年济南市自主引进创新团队项目(202228039) 山东省智能建筑技术重点实验室项目。
关键词 模糊弱扰动解耦 几乎扰动解耦 模糊控制 非线性控制 自适应控制 类严格反馈系统 fuzzy weak disturbance decoupling almost disturbance decoupling fuzzy control nonlinear control adaptive control strict feedback-like systems
  • 相关文献

参考文献3

二级参考文献19

  • 1Has'minskii R Z. Stochastic stability of differential equations[M]. Kluwer Academic Publishers: Massachusetts, 1980.
  • 2Kushner H J. Stochastic stability and control[M]. Academic Press: New York, 1967.
  • 3Florchinger E Lyapunov-like techniques for stochastic stability[J]. Siam J on Control and Optimization, 1995, 33(4): 1151-1169.
  • 4Krstic M, Deng H. Stabilization of uncertain nonlinear systems[M]. New York: Springer, 1998.
  • 5WU Z J, Xie X J, Zhang S Y. Adaptive backstepping controller design using stochastic small-gain theorem[J]. Automatica, 2007, 43(4): 608-620.
  • 6Li W Q, Xie X J. Inverse optimal stabilization for stochastic nonlinear systems whose linearizations are not stabilizable[J]. Automatica, 2009, 45(2): 498-503.
  • 7Xie X J, Li W Q. Output-feedback control of a class of high-order stochastic nonlinear systems[J]. Int J of Control, 2009, 82(9): 1692-1705.
  • 8Qian C J, Lin W. Non-Lipschitz continuous stabilizers for nonlinear systems with uncontrollable unstable linearization[J]. Systems and Control Letters, 2001, 42(3): 185-200.
  • 9Polendo J, Qian C J. A generalized framework for global output feedback stabilization of nonlinear systems[C]. Proc of the 44th IEEE Conf on Decision and Control. Seville, 2005: 2646-2651.
  • 10李武全,井元伟,张嗣瀛.一类高阶次随机非线性系统的输出反馈镇定[J].控制与决策,2010,25(1):126-129. 被引量:3

共引文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部