摘要
以中低速悬挂式永磁磁浮列车为研究对象,针对永磁磁浮列车运行过程中存在复杂性、非线性和大滞后等特点,常规控制策略很难满足控制需求。基于永磁磁浮列车试验线的线路实际运行数据,采用最小二乘法建立永磁磁浮列车动力学传递函数模型。并在此基础上提出一种基于自适应PSO的DMC-FOPID控制算法,此算法针对DMC-FOPID控制算法参数多、难整定等问题,采取自适应PSO方法进行多参数寻优,提升算法控制性能。基于永磁磁浮试验线运行过程的仿真结果验证本文所提控制方法的有效性,仿真结果表明:基于自适应PSO的DMC-FOPID控制算法与常规算法相比,具有响应速度更快、跟踪精度更高、抗干扰能力更强等优势,能够实现永磁磁浮列车高精度速度跟踪控制。
This paper took the low and medium speed suspended permanent magnet maglev train as the research object.In view of the complexity,nonlinearity and large hysteresis characteristics of permanent magnet maglev trains during the operation process,conventional control strategies are difficult to meet the control needs.Based on the actual operating data of the permanent magnet maglev train test line,the least square method was used to establish a dynamic transfer function model of the permanent magnet maglev train.On this basis,a DMC-FOPID control algorithm based on adaptive PSO was proposed.This algorithm was used to solve the problems of multiple parameters of DMC-FOPID control algorithm and difficult tuning.The adaptive PSO method was used to optimize the multiple parameters and improve the control effect of the algorithm.The simulation results based on the operating process of the permanent magnet maglev test line verified the effectiveness of the method proposed in this paper.The simulation results show that the DMC-FOPID control algorithm based on adaptive PSO,with the advantages of faster response speed,higher tracking accuracy,and stronger anti-interference ability than conventional algorithms,can achieve high-precision speed tracking control of permanent magnet maglev trains.
作者
过振宇
李中奇
谭畅
GUO Zhenyu;LI Zhongqi;TAN Chang(School of Electrical and Automation Engineering,East China Jiaotong University,Nanchang 330013,China;Ganjiang Innovation Academy,Chinese Academy of Sciences,Ganzhou 341000,China)
出处
《铁道学报》
EI
CAS
CSCD
北大核心
2023年第9期74-84,共11页
Journal of the China Railway Society
基金
国家自然科学基金(62003138)
江西省主要学科学术和技术带头人培养计划(20213BCJ22002)
中国科学院江西稀土研究院自主部署项目(E255J001)
江西省教育厅科技项目(GJJ2200847)。