期刊文献+

基于IBA-KELM模型的TCT光伏阵列故障诊断研究

Research on Fault Diagnosis of TCT Photovoltaic Array Based on IBA-KELM Model
下载PDF
导出
摘要 针对光伏阵列的开路故障、短路故障、老化故障和局部阴影故障,提出了一种基于核极限学习机KELM(kernel extreme learning machine)的光伏阵列故障诊断方法,并采用改进的蝙蝠算法IBA(improved bat algorithm)对核极限学习机模型的参数进行优化来提高模型的诊断准确率。为避免蝙蝠算法陷入局部最优并加快在参数寻优过程中的收敛速度,引入Levy飞行策略并在速度更新公式中引入指数递减的惯性权重。通过全连接TCT(total-crosstied)结构光伏阵列的故障数据验证表明,与BA-KELM,PSO-KELM、PSO-ELM模型相比,IBA-KELM模型在参数优化过程中收敛速度更快,优化后模型诊断精度也更高。 Aimed at the open circuit fault,short circuit fault,degradation fault and partial shadow fault of a photo-voltaic(PV)array,a fault diagnosis method based on kernel extreme learning machine(KELM)is proposed,and the im-proved bat algorithm(IBA)is used to optimize the parameters of the KELM model,thus improving the model’s diagnos-tic accuracy.To avoid the bat algorithm from falling into a local optimum and accelerate the convergence speed in the parameter optimization process,the Levy flight strategy is introduced,and an exponential decreasing strategy is intro-duced into the speed update formula.The verification of fault data of a total-cross-tied(TCT)PV array indicates that com-pared with the BA-KELM,PSO-KELM,and PSO-ELM models,the proposed IBA-KELM model converges faster in the pa-rameter optimization process,and the fault diagnostic accuracy after optimization is higher.
作者 任晓琳 杨奕 高龙 于婧雅 韩青青 REN Xiaolin;YANG Yi;GAO Long;YU Jingya;HAN Qingqing(School of Electrical Engineering,Nantong University,Nantong 226019,China)
出处 《电源学报》 CSCD 北大核心 2023年第5期67-74,共8页 Journal of Power Supply
基金 国家自然科学基金资助项目(61403217) 南通市应用研究计划资助项目(JC201819)。
关键词 TCT光伏阵列 故障诊断 核极限学习机 Levy飞行 改进蝙蝠算法 total-cross-tied(TCT)photovoltaic array fault diagnosis kernel extreme learning machine(KELM) Levy flight improved bat algorithm(IBA)
  • 相关文献

参考文献8

二级参考文献69

  • 1杜燕军,冯长青.风切变指数在风电场风资源评估中的应用[J].电网与清洁能源,2010,26(5):62-66. 被引量:31
  • 2宫改云,高新波,伍忠东.FCM聚类算法中模糊加权指数m的优选方法[J].模糊系统与数学,2005,19(1):143-148. 被引量:81
  • 3NIAN Bei, FU Zhi-zhong. Automatic detection of defects in solar modules: Image processing in detecting[C] // International Conference on Wireless Communications Networking and Mobile Computing, 2010: 1-4.
  • 4ZHU Yong-qiang, WANG Wen-shan. Fault diagnosis method and simulation analysis for photovoltaic array[C] // International Conference on Electrical and Control Engineering, 2011 : 1569-1573.
  • 5Takumi, Junji, Kenji, et al. Experimental studies of failure detection methods in PV module strings[C] // IEEE 4th World Conference on Photovoltaic Energy Conversion, 2006: 2227-2230.
  • 6Takumi, Junji, Masayoshi. Fault detection by signal response in PV module strings[C] // IEEE Photovoltaic Specialists on Industrial Electronics, 2008: 1-5.
  • 7Schirone L, Califano F P. Fault finding in a 1 MW photovoltaic plant by reflectometry[C] // IEEE Photovoltaic Energy Conversion, 1994, 1(1): 846-849.
  • 8Takumi Takashima, Junji Yamaguchi, Masayoshi Ishida. Disconnection detection using earth capacitance measurement in photovoltaic module string[J]. Progress in Photovoltaics, 2008, 16(8): 669-677.
  • 9Meyer E L, van Dyk E E. Assessing the reliability and degradation of photovoltaic module performance parameters[J]. IEEE Trans on Reliability, 2004, 53(1): 83-93.
  • 10Kennedy J,Eberhart RC.Particle swarm optimization. Proceedings of the IEEE International Conference on Neural Networks . 1995

共引文献303

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部