期刊文献+

基于趋势预判和强度自调节的脱硝控制策略研究

Research on Denitrification Control StrategyBased on Trend Prediction and Intensity Self-Regulation
下载PDF
导出
摘要 构建新型电力系统对燃煤电站灵活性提出更高要求。机组频繁、快速变负荷给脱硝控制带来挑战。为解决传统控制存在的大迟延、强振荡等问题,提出兼顾响应速度和控制精度的脱硝控制策略。首先,基于运行参数对机组工况进行辨识和分类。然后,通过NO_x测量值变化趋势设计模糊规则修正表,对被调量进行趋势值预测修正以提高系统响应速率。最后,根据运行工况不同,从四个方面调节控制系统作用强度,以提升控制精度。工程现场的应用结果表明,该策略适用于机组全负荷运行工况。数据显示:NO_x排放均值提升6.2%;喷氨量减小14.06%;环保超标频次降低87.9%。NO_x控制水平及运行经济性由此得以提升。该研究打破传统控制中固定模型参数的局限性,可根据机组实际运行工况灵活调节模型强度,为实现火电热工精细化控制提供借鉴。 Building a new type of power system puts higher requirements on the flexibility of coal-fired power plants.Frequent and rapid load change of the unit brings challenges to denitrification control.To solve the problems of large delay and strong oscillation in traditional control,a denitrification control strategy is proposed to consider the response speed and control accuracy.Firstly,the working conditions of the unit are recognized and classified based on the operating parameters.Then,a fuzzy rule correction table is designed through the change trend of NO x measurement value,and the trend value prediction is corrected for the regulated quantity to improve the response rate of the system.Finally,according to the different operating conditions,the control system strength of action is adjusted in four aspects to improve the control accuracy.The application results in the project site show that the strategy is suitable for the full-load operating conditions of the unit.The data show that the average NO x emission is improved by 6.2%,the ammonia injection is reduced by 14.06%,and the frequency of exceeding the environmental protection standard is reduced by 87.9%. It improves the NO x control level and the operation economy.This research breaks the limitation of fixed model parameters in traditional control and can flexibly adjust the model strength according to the actual operating conditions of the unit,which provides a reference for realizing the fine control of thermal engineering in thermal power.
作者 张晓航 ZHANG Xiaohang(Northwest Electric Power Experimental Research Institute,China Datang Corporation Science&Technology General Research Institute Co.,Ltd.,Xi’an 710021,China)
出处 《自动化仪表》 CAS 2023年第9期55-60,共6页 Process Automation Instrumentation
关键词 火电 超低排放 脱硝控制 趋势预测 工况辨识 自适应调节 模糊规则 热工自动化 Thermal power Ultra-low emission Denitrification control Trend prediction Condition identification Adaptive regulation Fuzzy rules Thermal automation
  • 相关文献

参考文献10

二级参考文献61

共引文献66

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部