摘要
针对传统的快速搜索随机树(RRT)算法在路径规划的过程中收敛速度慢、路径冗长且在复杂的环境下成功率低的问题,提出了一种改进的RRT路径规划算法。该算法引入基于障碍占空比的扩展角度控制策略,通过父节点附近障碍物分布情况控制新节点的扩展方向,增加算法规划速度的同时保证了算法的成功率。随后通过剪枝优化和二阶贝塞尔曲线对生成的路径进行平滑处理。通过多组仿真结果表明,改进RRT算法与原始RRT算法相比,改进RRT算法生成的路径长度更短,时间更快,扩展角度收敛性更高,规划成功率也有较大的提高。
Aiming at the problems of the traditional rapid-exploration random tree(RRT)algorithm in path planning,such as slow convergence speed,long path and low success rate in complex environment,an improved RRT path planning algorithm was proposed.In this algorithm,an expansion angle control strategy based on the duty cycle of obstacles is introduced to control the expansion direction of new nodes through the distribution of obstacles near the parent node,which increases the planning speed of the algorithm and ensures the success rate of the algorithm.Then the path is smoothed by pruning optimization and second order Bessel curve.Multiple simulation results show that compared with the original RRT algorithm,the improved RRT algorithm generates shorter path length,faster time,higher expansion angle convergence,and greater planning success rate.
作者
朱花
郝赫
阳明
刘正超
ZHU Hua;HAO He;YANG Ming;LIU Zhengchao(School of Mechanical and Electrical Engineering,Jiangxi University of Science and Technology,Ganzhou 341000,China)
出处
《组合机床与自动化加工技术》
北大核心
2023年第9期11-15,共5页
Modular Machine Tool & Automatic Manufacturing Technique
基金
国家自然科学基金项目(52205528,2019J12GX043)。