期刊文献+

基于时频图与改进E-GraphSAGE的网络流量特征提取方法 被引量:1

A Method of Feature Extraction for Network Traffic Based on Time-Frequency Diagrams and Improved E-GraphSAGE
下载PDF
导出
摘要 由于网络系统的时变性,时域空间网络流量不稳定并且分离难度高,传统时空网络模型对时空序列数据空间结构的刻画和对时空特征的挖掘不充分。针对上述问题,文章提出一种基于时频图与改进E-GraphSAGE的网络流量特征提取方法。首先以bior1.3小波基函数为势变基底,完成原始流量一维时域向时频域空间的映射变换,通过可视化分析去除噪声频段;然后在E-GraphSAGE模型的内部融合Conv LSTM模型,构建融合时空长期依赖特征的三维特征提取方法;最后获得包含局部和全局信息的时空频三维特征的边缘嵌入信息,解决了传统时空特征提取模型存在的整体信息缺失问题。可视化分析和分类实验结果表明,处理后的流量特征具有更高的稳定性和可分离度。同时,将文章所提方法与其他关联度较高的方法进行比较,结果表明文章所提方法在准确率、精确度、召回率及F1-score上均表现较好。 Due to the time variability of the network system,the instability of time-space network traffic and the difficulty of separation,and the traditional spatiotemporal network model are insufficient in characterizing the spatial structure of spatiotemporal sequence data and mining spatiotemporal features.Therefore,a method of feature extraction for network traffic based on time-frequency diagrams and improved E-GraphSAGE was proposed.Firstly,based on the potential change of the bior1.3 wavelet basis function,the mapping transformation of original traffic from the one-dimensional time domain to the time-frequency domain was completed,and the noise band was removed by visual analysis.Then,the 1D ConvLSTM model was fused within the E-GraphSAGE model to construct a 3D feature extraction method that integrated spatiotemporal and long-term dependent features.Finally,edge embedding of spatiotemporal frequency 3D features containing local and global information was obtained to solve the problem of global information loss in traditional spatiotemporal feature extraction models.The visual analysis and multi-classification experiments show that the traffic characteristics processed in this paper have higher stability and separability.At the same time,comparing with other methods with higher correlation degrees,this method achieves better results in accuracy,accuracy,recall rate,and F1-score.
作者 张玉臣 张雅雯 吴越 李程 ZHANG Yuchen;ZHANG Yawen;WU Yue;LI Cheng(Department of Cryptogram Engineering,Information Engineering University of PLA,Zhengzhou 450001,China)
出处 《信息网络安全》 CSCD 北大核心 2023年第9期12-24,共13页 Netinfo Security
基金 国家自然科学基金[61902427]。
关键词 流量分类 时频分析 流谱理论 特征提取 E-GraphSAGE traffic classification time-frequency analysis flow spectrum theory feature extraction E-GraphSAGE
  • 相关文献

参考文献5

二级参考文献21

  • 1Mochalski K, Schulze H. Ipoque Internet study 2008/2009 [ EB/OL]. http://www. ipoque. com/resources/intemet-studies/intemet-study-2008_2009.
  • 2Bleul H, Rathgeb E P, Zilling S. Advanced P2P multiprotocol trafficanalysis based on application level signature detection [ C ]//Proc ofthe 12th International Telecommunications Network Strategy andPlanning Symposium. Piscataway, NJ: IEEE Press,2006:1-6.
  • 3Sen S, Spatscheck 0,Wang D M. Accurate, scalable in-network i-dentification of P2P traffic using application signatures[ C]//Proc ofthe 13th International Conference on World Wide Web. New York:ACM Press,2004:512-521.
  • 4Haffner P, Sen S, Spatscheck 0,et al. ACAS: automated construc-tion of application signatures [ C ]//Proc of the ACM SIGCOMMWorkshop on Mining Network Data. New York: ACM Press,2005 :197-202.
  • 5Moore A W, Zuev D. Internet traffic classification using Bayesian a-nalysis techniques [ C ] //ACM SIGMETRICS Performance EvaluationReview. New York: ACM Press,2005 :50-60.
  • 6McGregor A, Hall M, Loner P, et al. Flow clustering using machinelearning techniques [ M ] //Passive and Active Network Measurement.Berlin : Springer, 2004 : 205-214.
  • 7Zander S, Nguyen T, Armitage G. Automated traffic classificationand application identification using machine learning [ C ] //Proc ofIEEE Conference on Local Computer Networks. Piscataway : IEEEPress,2005 :250-257.
  • 8Qian Feng, Hu Guangmin, Yao Xingmiao. Semi-supervised Internetnetwork traffic classification using a Gaussian mixture model [ J ].AEU-lnternationai Journal of Electronics and Communications,2008,62(7) :557-564.
  • 9Pietrzyk M, Costeux J L, Urvoy-Keller G, et al. Challenging statisti-cal classification for operational usage: the ADSL case[ C]//Proc ofthe 9th ACM SIGCOMM Conference on Internet Measurement Confer-ence. New York:ACM Press,2009: 122-135.
  • 10Mamerides A K,Pezaros D P,Kim HC, et al. Internet traffic classi-fication using energy time-frequency distributions [ C]//Proc of IEEEInternational Conference on Communications. Piscataway : IEEEPress,2013:2513-2518.

共引文献22

同被引文献14

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部