期刊文献+

基于多源数据与机器学习的乡村旅游竞争力评价研究——以杭州市临安区为例 被引量:4

Evaluation of rural tourism competitiveness based on multi-source data and machine learning:A case study of Lin’an District in Hangzhou,China
原文传递
导出
摘要 旅游竞争力评价对推动乡村旅游产业可持续发展具有重要意义。在数字时代背景下,多源数据和机器学习方法能够从地理空间角度高效揭示相关要素特征,为乡村旅游竞争力的科学评价提供新视角与新手段。论文以杭州市临安区为例,基于多源遥感与互联网数据,构建乡村旅游竞争力评价指标体系,对比分析逻辑回归、支持向量机、随机森林、极限梯度提升树共4种机器学习模型在乡村旅游竞争力评价上的精度,并选取最优模型以揭示临安区村域尺度的乡村旅游竞争力格局。结果表明:①运用随机森林模型进行乡村旅游竞争力评价,其预测精度优于其他3种机器学习模型。②旅游资源、服务设施、交通可达性、政策条件是影响乡村旅游竞争力评价的主要指标。③高竞争力类村庄以条带状分布在临安区北部、西部地区,发展条件优越;中竞争力类以团块状分布在临安东部、中西部地区,在旅游资源品质、服务设施等方面存在欠缺;低竞争力村庄以斑块状分布在临安区中西部地区,生态环境优越、土地禀赋较好,但缺乏资源开发与政策支持。研究可为推动乡村旅游的可持续发展提供政策参考与方法借鉴。 Evaluating tourism competitiveness is important for ensuring the sustainable development of rural tourism.In the digital information era,multi-source data and machine learning methods can efficiently reveal the characteristics of relevant elements from a geospatial perspective,providing a new method for scientific evaluation of rural tourism competitiveness.Based on multi-source remote sensing and Internet data at the village level from 2019 to 2022,this study identified the rural tourism competitiveness in Lin'an District of Hangzhou City using four machine learning models,including logistic regression(LR),support vector machine(SVM),random forest(RF),and extreme gradient boosting tree(XGB),and the optimal model was selected to reveal the spatial pattern of competitiveness and analyze the critical indicators of identification.The results show that:1)The accuracy of the rural tourism competitiveness evaluation using the random forest(RF)model is better than the other three machine learning models.2)Tourism resources,service facilities,accessibility,and policy conditions are the main factors affecting the rural tourism competitiveness.3)Villages in the high tourism competitiveness category are distributed in strips in the northern and western areas of Lin'an District,with superior development conditions.The medium competitiveness villages are distributed in clumps in the eastern and central-western areas of the district,which have lower quality of tourism resources and service facilities.Low-competitiveness villages are distributed in patches in the central and western areas of the district,with superior ecological environment and land endowment,but lacking resource development and policy support.The study results may provide some policy references and technical supports for promoting the sustainable development of rural tourism.
作者 赵秋皓 金平斌 王冰冰 徐鹏飞 ZHAO Qiuhao;JIN Pingbin;WANG Bingbing;XU Pengfei(School of Earth Sciences,Zhejiang University,Hangzhou 310058,China;College of Landscape Architecture,Zhejiang A&F University,Hangzhou 311300,China)
出处 《地理科学进展》 CSCD 北大核心 2023年第8期1541-1555,共15页 Progress in Geography
基金 浙江省软科学研究计划项目(2022C35090) 浙江省社科联项目(2023N043) 浙江农林大学科研发展基金项目(2022LFR031)。
关键词 旅游竞争力 机器学习 乡村旅游 全域旅游 乡村振兴 tourism competitiveness machine learning rural tourism regional tourism rural revitalization
  • 相关文献

参考文献32

二级参考文献620

共引文献2054

同被引文献90

引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部