摘要
统计图形是科研论文中必不可少的组成部分,通过规范、美观的可视化图形直观、准确地呈现研究结果有利于促进学术成果的交流、传播与应用。医疗干预的安全性是其临床应用的基本前提,随机对照试验作为确定医疗干预疗效和安全性的重要研究设计,准确地呈现其结果的安全性信息便显得尤为重要。但是,有研究发现目前发表的随机对照试验报告中并没有充分地利用可视化图形呈现危害结局数据。为了促进临床研究人员更好地使用可视化图形呈现危害结局数据,国际学者近期在BMJ发表了一项共识研究,确定并推荐10种用于呈现随机对照试验危害结局数据的统计图形。为了便于国内学者了解和应用该共识,本文对该共识与推荐意见进行了解读,以期为提高国内随机对照试验报告中危害结局数据可视化的质量提供帮助。
Statistical graph is an indispensable part of scientific papers.It is helpful to promote the communication,dissemination,and application of academic achievements by presenting research results intuitively and accurately through standardized and beautiful visual graphs.The safety of a medical intervention is the basic premise of its clinical application,and randomized controlled trial(RCT)as an important design to determine the efficacy and safety of medical interventions,it is extremely important to accurately present the information on the safety outcomes of interventions found therein.However,the research found that the reports of RCTs didn’t adequately use visual graphs to present harms data.In order to promote clinical researchers to better use visual graphs to present harms data,international scholars recently published a consensus study in BMJ,which identified and recommended 10 statistical graphs for presenting harms data in RCTs.In order to facilitate domestic scholars to understand and apply the consensus,this article interprets the consensus and recommendations,and it is expected to provide help for improving the quality of harms visualization in domestic papers of RCTs.
作者
卢存存
陈子佳
乔萌
雷超
王子怡
尚文茹
张强
谢雁鸣
王志飞
LU Cuncun;CHEN Zijia;QIAO Meng;LEI Chao;WANG Ziyi;SHANG Wenru;ZHANG Qiang;XIE Yanming;WANG Zhifei(Institute of Basic Research in Clinical Medicine,China Academy of Chinese Medical Sciences,Beijing 100700,P.R.China;Evidence Based Social Science Research Center,School of Public Health,Lanzhou University,Lanzhou 730000,P.R.China;Evidence-Based Medicine Center,School of Basic Medical Sciences,Lanzhou University,Lanzhou 730000,P.R.China)
出处
《中国循证医学杂志》
CSCD
北大核心
2023年第9期1110-1116,共7页
Chinese Journal of Evidence-based Medicine
基金
国家重点研发计划项目(编号:2018YFC1707410)。
关键词
临床试验
危害
不良事件
可视化
Clinical trial
Harms
Adverse events
Visualization