期刊文献+

基于KDTree改进的Super 4PCS+ICP算法在点云配准中的应用研究 被引量:5

Study on the application of Super 4PCS+ICP algorithmbased on KDTree improvement in point cloud alignment
下载PDF
导出
摘要 在点云配准过程中,为了提高点云的配准精度,针对ICP算法对于初始位姿的局限性,对点云数据进行Super4PCS+ICP的“先粗后精”处理。首先利用KDTree树搜索对应点,用局部区域的特征度确定特征点集,再使用Super4PCS算法实现粗配准。针对精配准提出KDTree树来加快速度,SVD求解对应点参数、常数为1的加权平均、求解误差函数等手段来实现对ICP算法的改进,并求出刚体变换后的旋转平移矩阵,提高点云配准精度。实验表明,相较于传统ICP算法,本文方法的配准精度有了显著的提升。本文研究的方法可为点云配准的深入研究提供一定的参考。 In the process of point cloud alignment,in order to improve the accuracy of point cloud alignment,the point cloud data is processed by Super 4PCS+ICP"coarse first and then fine"for the limitations of ICP algorithm for initial poses.The corresponding points are first searched using the KDTree,and the feature point set is determined using the feature degree of the local area,and then the coarse alignment is achieved using the Super 4PCS algorithm.KDTree is proposed for fine registration to speed up the process,SVD to solve for the corresponding point parameters,weighted average with constant 1,and solving for the error function to realize the improvement of ICP algorithm and to find out the rotation translation matrix after rigid body transformation to improve cloud registration accuracy.Experiments show that compared with the traditional ICP algorithm,the registration accuracy of the proposed method is significantly improved.The method studied in this paper can provide some reference for the further study on point cloud registration.
作者 夏军勇 高睿杰 钟飞 XIA Jun-yong;GAO Rui-jie;ZHONG Fei(School of Mechanical Engineering,Hubei University of Technology,Wuhan 430068,China)
出处 《激光与红外》 CAS CSCD 北大核心 2023年第9期1333-1338,共6页 Laser & Infrared
基金 武汉市科技成果转化专项项目(No.2020030603012342)资助。
关键词 Super_4PCS算法 ICP算法 KDTree 点云轮廓 点云配准 Super_4PCS algorithm ICP algorithm KDTree point cloud contour point cloud alignment
  • 相关文献

参考文献9

二级参考文献61

  • 1罗先波,钟约先,李仁举.三维扫描系统中的数据配准技术[J].清华大学学报(自然科学版),2004,44(8):1104-1106. 被引量:100
  • 2张爱武,孙卫东,李风亭.基于激光扫描数据的室外场景表面重建方法[J].系统仿真学报,2005,17(2):384-387. 被引量:30
  • 3沈海平,达飞鹏,雷家勇.基于最小二乘法的点云数据拼接研究[J].中国图象图形学报,2005,10(9):1112-1116. 被引量:28
  • 4臧克.基于Riegl三维激光扫描仪扫描数据的初步研究[J].首都师范大学学报(自然科学版),2007,28(1):77-82. 被引量:37
  • 5Besl P J, McKay N D. A method for registration of 3-D shapes[J]. IEEE Trans. Pattern Analysis and Machine Intelligence, 1992,18(5) :239-256.
  • 6Bae K H,Lichti D D. A .method for automated regist ration of unorganized point clouds [J]. J. of Photogrammetry and Remote Sensing, 2008,63 (1) : 36- 54.
  • 7Liu Y H. Improving ICP with easy implementation for free form surface matching [J]. Pattern Recognition, 2004,37(2) :211-226.
  • 8David G. Lowe, distinctive image features from scaleinvariant [J ]. International Journal of Computer Vision, 2004,60(2) : 1573-1405.
  • 9Chrysanthou Y, Cain K, Silberman N, et al. Image- based registration of 3D-range data using feature surface elements[C]// Proc. of the 5th International Symposium on Virtual Reality, Archaeology and Cultural Heritage, Eurograohics, 2004 : 115-124.
  • 10Smith E R, King B J, Stewart C V, et al. Registration of combined range-intensity scans] initialization through verification[J]. Computer Vision and Image Understanding, 2007,110(2) : 226-244.

共引文献265

同被引文献70

引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部