期刊文献+

一类纳什均衡问题的求解算法

The method for a class of Nash equilibrium game
下载PDF
导出
摘要 随着纳什均衡问题被应用到多个领域,其求解算法也得到了越来越多的关注。但鉴于纳什均衡是由一系列优化问题组成的复杂系统,经典的约束优化算法不能被直接应用于求解该问题中,导致求解该问题的困难。对于一类效用函数是强凸的纳什均衡问题,利用Nikaido-Isoda函数将其转化为一类与之完全等价的光滑约束优化问题进行求解是一种有效途径。本文在纳什均衡问题效用函数的梯度具有强单调性这一假设条件下给出求解此类问题的Nikaido-Isoda算法并证明该算法具有全局收敛性。最后,通过求解两类经典纳什均衡问题,验证了该算法的可行性和有效性。 The Nash equilibrium game has been applied to many fields,the algorithm for the problem has attracted much attention in recent years.But since the Nash equilibrium game is a complex system composed by a series of optimization problems,the standard optimization method cannot be directly used for the problem,this leads to the difficulty of solving it.For a class of Nash equilibrium games with strongly convex payoff functions,using the Nikaido-Isoda function to transform the Nash equilibrium game into a smooth constraint optimization problem is an effective method to solve the Nash equilibrium game.Based on the gradient strongly monotonity of the Nash equilibrium payoff function,we present a Nikaido-Isoda algorithm for the game and the global convergence of the algorithm is proved.Finally,by solving two kinds of standard Nash equilibrium problems,the feasibility and effectiveness of the Nikaido-Isoda algorithm are verified.
作者 侯剑 李萌萌 文竹 HOU Jian;LI Mengmeng;WEN Zhu(College of Economics,Fudan University,Shanghai200433,China;School of Economics and Management,Inner Mongolia University of Technology,Hohhot 010051,Neimenggu,China)
出处 《运筹学学报》 CSCD 北大核心 2023年第3期129-136,共8页 Operations Research Transactions
关键词 纳什均衡 Nikaido Isoda函数 约束优化 强凸函数 Nash equilibrium game Nikaido-Isoda function constrained optimization problem strongly convex function
  • 相关文献

参考文献4

二级参考文献32

  • 1余谦,王先甲.基于粒子群优化求解纳什均衡的演化算法[J].武汉大学学报(理学版),2006,52(1):25-29. 被引量:37
  • 2查旭,左斌,胡云安.利用退火回归神经网络极值搜索算法求纳什均衡解[J].控制与决策,2006,21(10):1167-1171. 被引量:4
  • 3Contreras J, Klusch M, Krawczyk J B. Numerical solutions to Nash-Coumot equilibria in coupled constraint electricity markets [J]. IEEE Transaction on Power Systems, 2004, 19( 1 ) :195-206.
  • 4Facehinei F, Pang J S. Finite-Dimensional Variational Inequalities and Complementarity Problems [ M ]. Berlin: Springer Ver- lag, 2003.
  • 5Zhang J Z, Qu B, Xiu N H. Some projection-like methods for the generalized Nash equilibria [ J ]. Computational Optimization and Applications, 2010, 45 ( 1 ) :89-109.
  • 6Panicucci P,Pappalardo M, Passacantando M. On solving generalized Nash equilibrium problems via optimization[ J ]. Opti- mization Letters, 2009, 3 (3) :419-435.
  • 7Sun W Y,Yuan Y X. Optimization Theory and Methods: Nonlinear Programming[ M]. New York: Springer, 2006.
  • 8Zhu T, Yu Z G. A simple proof for some important properties of the projection mapping [ J ]. Mathematical Inequalities and Applications, 2004, 7 ( 3 ) :453-456.
  • 9Han D R, Lo H K. Two new self-adaptive projection methods for variational inequality problems [ J ]. Computers and Mathe- matics with Applications, 2002, 43 (12) :1 529-1 537.
  • 10He B S, He X Z, Liu H X, et al. Self-adaptive projection method for co-coercive variational inequalities[ J]. European Journal of Operational Research, 2009, 196( 1 ) :43-48.

共引文献40

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部