期刊文献+

地塞米松诱导新西兰兔先天性腭裂的非靶向代谢组学研究

Untargeted metabolomics study of dexamethasone-induced congenital cleft palate in New Zealand rabbits
原文传递
导出
摘要 目的应用非靶向代谢组学技术比较地塞米松干预后的腭裂胚胎、非腭裂胚胎与正常胚胎在腭突发育期间胎盘组织的差异。方法将12只孕兔(40周龄,体质量4.5~5.0 kg的雌性新西兰兔)按照随机数表法分为地塞米松组(8只)和对照组(4只),在妊娠第13到16天每日分别给两组孕兔后腿四头肌肌肉注射1次1.0 mg地塞米松和1 ml生理盐水,并于妊娠第21天处死孕兔,剖腹取其子代,按照子代腭部表型分为3组,分别为地塞米松腭裂组、地塞米松非腭裂组(经地塞米松未诱导腭裂)和正常对照组,再收集胎盘组织样本。应用液相色谱—三重串联四级杆液质联用仪获取胚胎胎盘组织样本的相应图谱,主成分分析法描绘3组胚胎胎盘组织代谢产物在胚胎腭突发育阶段的代谢差异。结果地塞米松腭裂组、地塞米松非腭裂组和正常对照组之间存在明显的代谢差异,差异代谢物共133种(VIP>1,P<0.05),涉及的重要代谢通路包括维生素B6代谢、赖氨酸代谢、精氨酸合成代谢、半乳糖代谢。正常对照组、地塞米松非腭裂组和地塞米松腭裂组中的维生素B6(分别为0.960±0.249、0.856±0.368、1.319±0.322)、半乳糖(分别为0.888±0.171、1.033±0.182、1.127±0.127)、赖氨酸(分别为1.551±0.924、1.789±1.435、0.541±0.424)和尿素(分别为0.743±0.142、1.137±0.301、1.171±0.457)差异均有统计学意义(F=5.90,P=0.008;F=5.59,P=0.009;F=4.26,P=0.025;F=5.29,P=0.012)。结论基于胎盘组织代谢物建立的统计模型表明,3组胚胎胎盘组织的代谢物表达具有差异;地塞米松诱导腭裂形成可能与维生素B6代谢、赖氨酸代谢、精氨酸合成代谢、半乳糖代谢高度相关。 Objective To investigate the metabolic disorders in placental tissues of dexamethasone induced cleft palate mode.Methods Twelve pregnant rabbits were randomly divided into dexamethasone group(experimental group,8)and saline control group(4),and a certain amount of dexamethasone and saline were administered intramuscularly to the experimental and control groups respectively from embryonic days(ED)13 to 16,and placental tissue samples were collected on day 21 of gestation.The corresponding profiles of the embryonic placental tissue samples were obtained by liquid chromatography-triple tandem quadrupole(LC-MS),and the metabolites of the embryonic placental tissues were characterized by principal component analysis among the dexamethasone-treated group with cleft palate(D-CP group),the dexamethasone-treated group without cleft palate(D-NCP group)and the control group.Results There were significant metabolic differences among the D-CP group,D-NCP group and control group,with a total of 133 differential metabolites(VIP>1,P<0.05)involving in important metabolic pathways including vitamin B6 metabolism,lysine metabolism,arginine anabolic metabolism,and galactose metabolism.The four metabolites,vitamin B6,galactose,lysine and urea,differed among the three groups(P<0.05).There were significant differences in vitamin B6(0.960±0.249,0.856±0.368,1.319±0.322),galactose(0.888±0.171,1.033±0.182,1.127±0.127),lysine(1.551±0.924,1.789±1.435,0.541±0.424)and urea(0.743±0.142,1.137±0.301,1.171±0.457,respectively)levels among control group,D-NCP group and D-CP group(F=5.90,P=0.008;F=5.59,P=0.009;F=4.26,P=0.025;F=5.29,P=0.012).Conclusions The results indicated that dexamethasone induced cleft palate may be highly correlated with metabolic disorders including vitamin B6 metabolism,lysine metabolism,arginine anabolic metabolism and galactose metabolism.
作者 林兰玲 刘皓月 罗枭 郑谦 石冰 龚萌 李承浩 Lin Lanling;Liu Haoyue;Luo Xiao;Zheng Qian;Shi Bing;Gong Meng;Li Chenghao(Department of Cleft Lip and Palate Surgery,West China Hospital of Stomatology,Sichuan University&State Key Laboratory of Oral Diseases&National Center for Stomatology&National Clinical Research Center for Oral Diseases,Chengdu 610041,China)
出处 《中华口腔医学杂志》 CAS CSCD 北大核心 2023年第9期938-943,共6页 Chinese Journal of Stomatology
基金 四川省科技厅重点研发计划(2022ZDYF2641、2023ZDYF2883、2023ZDYF2596)。
关键词 地塞米松 先天性腭裂 新西兰兔 代谢组学 Dexamethasone Cleft palate New Zealand rabbits Metabolic disorders
  • 相关文献

参考文献2

二级参考文献26

  • 1Thomason HA, Zhou H, Kouwenhoven EN, Dotto GP, Restivo G, Nguyen BC and Little H, et al. Cooperation between the transcription factors p63 and IRF6 is essential to prevent cleft palate in mice. J Clin Invest 2010, 120: 1561-1569.
  • 2Nawshad A. Palatal seam disintegration: to die or not to die? That is no longer the question. Dev Dyn 2008, 237: 2643-2656.
  • 3Kitase Y, Yamashiro K, Fu K, Richman JM and Shuler CF. Spatiotemporal localization of periostin and its potential role in epithelial-mesenchymal transition during palatal fusion. Cells Tissues Organs 2011,193: 53-63.
  • 4Vaziri Sani F, Kaartinen V, El Shahawy M, Linde A and Grilli-Linde A. Developmental changes in cellular and extracellular structural macromolecules in the secondary palate and in the nasal cavity of the mouse. Eur J Oral Sci 2010, L18: 221-236.
  • 5Bolos V, Grego-Bessa J and de la Pompa JL. Notch signaling in development and cancer. Endocr Rev 2007, 28: 339-363.
  • 6Udolph G. Notch signaling and the generation of cell diversity in Drosophila neuroblast lineages. Adv Exp Med Biol 2012, 727: 47-60.
  • 7Nagase H and Nakayama K. γ-Secretase-regulated signaling typified by Notch signaling in the immune system. CUIT Stem Cell Res Ther 2013,8: 341-356.
  • 8Anderson LM and Gibbons GH. Notch: a mastermind of vascular morphogenesis. J Clin Invest 2007, 117: 299-302.
  • 9Mitsiadis TA, Regaudiat L and Gridley T. Role of the Notch signalling pathway in tooth morphogenesis. Arch Oral Biol 2005, 50: 137- 140.
  • 10Kong Y, Glickman J, Subramaniam M, Shahsafaei A, Allamneni KP, Aster JC and Sklar J, et al. Functional diversity of notch family genes in fetal lung development. Am J Physiol Lung Cell Mol Physiol 2004, 286: L107510-L107583.

共引文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部