摘要
用锥拉伸压缩不动点定理,研究一类三阶常微分方程周期边值问题■正解的存在性,其中α,β,γ均为正的常数,且α∈(0,+∞),β∈(0,π^(2)),γ=αβ,f∈C([0,1]×[0,∞),[0,∞)).结果表明,当非线性项f满足适当的条件时,上述问题至少存在一个正解.
By using the fixed point theorem on expansion and compression of cones,we study the existence of positive solutions for a class of periodic boundary value problems of third-order ordinary differential equations ■,whereα,β,γare positive constants,α∈(0,+∞),β∈(0,π^(2)),γ=αβ,f∈C([0,1]×[0,∞),[0,∞)).The results show that there exists at least one positive solution to the above problem when the nonlinear term f satisfies appropriate conditions.
作者
季冉
JI Ran(School of Mathematics and Statistics,Xidian University,Xi’an 710126,China)
出处
《吉林大学学报(理学版)》
CAS
北大核心
2023年第5期1090-1094,共5页
Journal of Jilin University:Science Edition
基金
国家自然科学基金(批准号:12061064).
关键词
三阶常微分方程
周期边值
GREEN函数
正解
third-order differential equation
periodic boundary value
Green function
positive solution