期刊文献+

基于稠密连接的多形性腺瘤辅助诊断

Auxiliary Diagnosis of Pleomorphic Adenoma Based on Dense Connection
下载PDF
导出
摘要 针对多形性腺瘤诊断完全依赖人工的问题,提出一种计算机辅助诊断方法.先通过采集数据并构建多形性腺瘤数据集,对当前稠密连接网络进行改进并融合通道注意力机制进行疾病组织分类特征提取,得到组织类别和概率,然后使用CART(classification and regression tree)进行推理学习,得到诊断结果.对难判断的类别选择进行人工辅助,进而实现对多形性腺瘤疾病的计算机辅助工作.实验结果表明,该方法在分类识别模块分类提取准确率达97.7%,决策树推理诊断准确率达100%.此外,分类识别模块在血细胞分类领域的准确率达98.6%.该方法具有一定的迁移性和有效性. Aiming at the problem that the diagnosis of pleomorphic adenoma completely relied on manual labor,we proposed a computer-assisted diagnostic method.Firstly,by collecting data and constructing a pleomorphic adenoma dataset,the current dense connection nertwork was improved and fused with the channel attention mechanism for disease tissue classification feature extraction to obtain tissue categories and probabilities.Secondly,by using classification and regression trees(CART),we obtained diagnostic results and provided manual assistance in the selection of difficult categories,thus achieving computer-assisted work on pleomorphic adenomatous diseases.The experimental results show that the method achieves classification extraction accuracy of 97.7%in the classification recognition module,and decision tree inference diagnostic accyracy of 100%.In addition,the accuracy of classification recognition module achieves 98.6%in the field of blood cell classification,and the method has certain transferability and validity.
作者 董立岩 张玥敏 朱晓冬 张小利 赵博 DONG Liyan;ZHANG Yuemin;ZHU Xiaodong;ZHANG Xiaoli;ZHAO Bo(College of Computer Science and Technology,Jilin University,Changchun 130012,China;Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education,Jilin University,Changchun 130012,China)
出处 《吉林大学学报(理学版)》 CAS 北大核心 2023年第5期1159-1168,共10页 Journal of Jilin University:Science Edition
基金 国家自然科学基金(批准号:61801190).
关键词 计算机应用 多形性腺瘤 稠密连接 注意力机制 决策树 computer application polymorphic adenoma dense connection attention mechanisms decision tree
  • 相关文献

参考文献17

二级参考文献127

共引文献246

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部