期刊文献+

海上落水目标协同搜寻路径规划算法研究

Research on Path Planning Algorithm for Collaborative Search of Falling into Water Targets on the Sea
下载PDF
导出
摘要 海上落水目标协同搜寻路径规划与多旅行商问题相似。论文所提出的算法由待救目标分类和搜寻路径规划两个子算法组成。首先经过基于遗传算法的K-means目标聚类,确定染色体数量及长度,解决海上搜救目标分类问题。然后经过多染色体遗传算法,获得多种搜救设备协同的海上搜救最优路径。计算结果表明,论文提出的海上落水目标协同搜寻路径规划算法,能够有效降低算法的搜索范围,提高算法的运行速度和全局搜索能力,提高海上落水目标搜救效率。 The path planning of cooperative search for falling into water targets is similar to the mTSP.The algorithm proposed in this paper consists of two sub algorithms,which are targets classification and search path planning.Firstly,through K-means tar-gets clustering based on genetic algorithm,the number and length of chromosomes are determined to solve the problem of maritime search and rescue targets classification.Then,through the multi chromosome genetic algorithm,the optimal search and rescue path is obtained.The calculation results show that the proposed algorithm can effectively reduce the search range,improve the operation speed and global search ability of the algorithm,and improve the search and rescue efficiency of the underwater targets.
作者 李林 LI Lin(China Waterborne Transport Research Institute,Beijing 100088)
出处 《计算机与数字工程》 2023年第6期1306-1309,1358,共5页 Computer & Digital Engineering
基金 国家重点研发计划(编号:2017YFC1404700)资助。
关键词 海上搜寻 路径规划 K-MEANS 遗传算法 均值-方差模型 maritime search path planning K-means genetic algorithm mean variance model
  • 相关文献

参考文献10

二级参考文献42

共引文献56

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部