期刊文献+

基于改进蒙特卡洛树搜索的无人机目标分配与突防决策方法

Multi-UVA target allocation and penetration decision based on an improved Monte Carlo tree search method
下载PDF
导出
摘要 针对多无人机任务规划问题,在多种约束与机动动作下,进行目标分配和突防决策统一建模与优化求解方法研究。首先,基于无人机自身优势、目标威胁以及突防概率分别建立目标分配优化函数和突防决策优化函数;然后,利用线性加权法将两者融合,形成多无人机协同任务规划统一目标函数;其次,在强化学习框架下,分阶段构建协同任务规划的状态空间和动作空间,并根据统一目标函数设计奖励函数;提出一种改进的蒙特卡洛树搜索强化学习算法,在统一目标函数最大收益下实现对无人机目标分配和突防决策问题的求解;最后,通过对比仿真实验验证所提出的方法的时效性和最优性。研究结果表明:相较于传统方法,所提出的方法在提升收敛程度的同时,将训练时间减少了15%。 In order to solve the problem of multi-UAV(unmanned aerial vehicle)mission planning,the unified modeling and optimization method of target assignment and penetration decision was studied with consideration of a variety of constraints and maneuvers.Firstly,based on each UAV's own advantages,target threat and penetration probability,the target allocation optimization function and penetration decision optimization function were established,respectively.Then,the linear weighting method was used to combine the above two functions to form a unified objective function for multi-UAV cooperative mission planning.Secondly,by applying the reinforcement learning technique,the state space and action space of collaborative task planning was constructed by stages,and the reward function was designed according to the unified objective function.In the meanwhile,a brand-new improved Monte Carlo tree search algorithm was proposed to solve the UAV target assignment and penetration decision problems simultaneously with the maximum benefit of the unified objective function.Finally,the effectiveness of the proposed method was verified by comparative simulation experiments.The results show that compared to traditional methods,the proposed method reduces training time by 15%and improves convergence.
作者 熊韫文 魏才盛 许丹 周亮 薛晓鹏 XIONG Yunwen;WEI Caisheng;XU Dan;ZHOU Liang;XUE Xiaopeng(School of Automation,Central South University,Changsha 410083,China;Space Intelligent Control Research Center,Central South University,Changsha 410083,China;School of Systems Engineering,National University of Defense Technology,Changsha 410073,China;Intelligent Science and Technology Academy of China Aerospace Science and Industry Corporation,Beijing 100144,China)
出处 《中南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2023年第8期3132-3144,共13页 Journal of Central South University:Science and Technology
基金 国家重点研发计划项目(2021YFA0717100) 国家自然科学基金资助项目(62003371) 湖南省自然科学基金优秀青年基金资助项目(2022JJ20081) 湖南省自然科学基金青年项目(2020JJ5684) 中南大学创新驱动计划项目(2023CXQD067)。
关键词 无人机任务规划 目标分配 多阶段决策 蒙特卡洛树搜索 UAV mission planning target assignment multistage decision Monte Carlo tree search
  • 相关文献

参考文献17

二级参考文献148

共引文献242

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部