期刊文献+

基于速率状态摩擦定律的地震震级计算

Seismic magnitude calculation based on rate-and state-dependent friction law
下载PDF
导出
摘要 在研究与地震相关活动的过程中,例如:页岩气开采,EGS系统等,数值模拟是一种常用的研究手段。在目前的数值模拟中,往往通过人为设置某个变量(例如滑动速度)的临界值来判断单元是否失稳,并以此为基础计算地震震级。这有很强的主观随意性,附加的人为因素可能对计算结果产生较大影响,导致结果不准确。本文基于速率状态摩擦定律,提出了求解地震震级的新方法。首先,对滑动面上的每个单元进行阶段划分。然后,对处于同震阶段的所有单元在时间和空间上进行聚类。最后,根据聚类标签,计算累计滑移-断层位置图中对应区域的面积和,即可得到某事件的地震矩,进而得到震级。本方法从摩擦定律本身出发,选择合适的判断标准对单元滑动过程进行阶段划分,并通过聚类得到震级,减少了人为主观性对结果的影响。随后,通过一个垂直的二维光滑断层的案例分析对该方法进行验证,结果证明该方法是合理的。另外,总结和讨论了目前几种判断地震的方法,重点分析了临界功率密度在应用过程中存在的问题。 In the engineering related to seismic activities,such as shale gas extraction and EGS system,numerical simulation is a common research method.In current numerical simulations,the critical value of a variable(e.g.,sliding velocity)is often set artificially to determine whether the element is destabilized,on which the seismic magnitude is calculated.This practice is highly subjective and arbitrary,which leads to inaccurate calculation results.In this paper,we propose a new method for calculating seismic magnitude based on the rate-state dependent friction law.Firstly,the sliding history of each element on the sliding surface is divided into stages,and then all elements in the coseismic stage are clustered in time and space.Finally,the seismic moment of an event is obtained by calculating the sum of the corresponding areas of the“cumulative slip-fault location”plot according to the clustering labels,which in turn gives the seismic magnitude.
作者 杨横涛 白冰 林杭 YANG Heng-tao;BAI Bing;LIN Hang(School of Resources and Safety Engineering,Central South University,Changsha 410083,China;State Key Laboratory of Geomechanics and Geotechnical Engineering,Institute of Rock and Soil Mechanics,Chinese Academy of Sciences,Wuhan 430071,China)
出处 《Journal of Central South University》 SCIE EI CAS CSCD 2023年第8期2671-2685,共15页 中南大学学报(英文版)
基金 Projects(42277175,41672252,41972316)supported by the National Natural Science Foundation of China Project(2023JJ30657)supported by the Hunan Provincial Natural Science Foundation of China。
关键词 数值模拟 地震震级 阶段划分 事件聚类 临界准则 numerical simulation seismic magnitude stage division clustering critical criterion
  • 相关文献

参考文献5

二级参考文献48

  • 1陈运泰,刘瑞丰.地震的震级[J].地震地磁观测与研究,2004,25(6):1-12. 被引量:121
  • 2[3]Abe K. 1995. Magnitudes and moments of earthquakes. In: Ahrens T J. (ed). Global Earth Physics: A Handbook of Physical Constants[M]. Washington:American Geophysical Union,206~213
  • 3[4]Abe K and Kanamori H. 1979. Temporal variation of the activity of intermediate and deep focus earthquakes[J]. J Geophys Res,84:3 589~3 595
  • 4[5]Aki K. 1966. Generation and propagation of G waves from Niigata earthquake of June 16,1964. Estimation of earthquake movement, released energy and stress-strain drop from G wave spectrum[J]. Bull Earthq Res Inst. Tokyo Univ, 44: 23~88
  • 5[6]Aki K. 1967. Scaling law of seismic spectrum[J]. J Geophys Res,72:1217~1231
  • 6[8]Bormann P. (ed). 2003. New Manual of Seismological Observatory Practice[M]. (in Press)
  • 7[9]Chinnery M A and North R G. 1975. The frequency of very large earthquake[J]. Science, 190:1197~1198
  • 8[10]Duda S J. 1989. Earthquakes: Magnitude, energy, and intensity. In:James D. (ed). Encyclopedia of Solid Earth Geophysics [M],272~288. New York: Van Nostrand-Reinhold
  • 9[11]Geller R J. 1976. Scaling relations for earthquake source parameters and magnitudes[J]. Bull Seisin Soc Amer, 66:1501~1523
  • 10[12]Gutenberg B. 1945a. Amplitudes of surface waves and magnitudes of shallow earthquakes[J]. Bull Seism Soc Amer, 35:3~12

共引文献176

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部